EASE

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

PATTERSON-KELLEY CO.

P-K MACH 'n' ROLL MnR1050

DES. J. ROBERSON
JOB NO. 11-1535

DATE 12/4/15

1

SHEETS

SEISMIC ANCHORAGE SLAB ON GRADE

FRONT ELEVATION

NOTES:

1. FORCES ARE DETERMINED PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10

STRENGTH DESIGN IS USED. (SDS = 2.20, Δp = 1.0, |p| = 1.5, Rp = 2.5, Ω_0 = 2.5, z/h = 0)

HORIZONTAL FORCE (En) = 0.99 Wp HORIZONTAL FORCE (Emh) = 2.48 Wp (FOR CONCRETE ANCHORAGE) VERTICAL FORCE (Ev) = 0.44 Wp

- 2. CENTER OF GRAVITY (C.G.) AND WEIGHT ARE THE GOVERNING PARAMETERS FOR DESIGN. THESE CALCULATIONS ENCOMPASS ALL WEIGHTS UP TO THE MAXIMUM WEIGHT SHOWN.
- 3. STRUCTURAL ENGINEER OF RECORD FOR THE BUILDING SHALL PROVIDE SUPPORT STRUCTURE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN IN COMBINATION WITH ALL OTHER LOADS THAT MAY BE PRESENT.

EASE

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

PATTERSON-KELLEY CO.

JOB NO. 11-1535

DES. J. ROBERSON

2

P-K MACH 'n' ROLL MnR1050

DATE 12/4/15 OF

2 SHEETS

SEISMIC ANCHORAGE

SLAB ON GRADE

LOADS: PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10.

STRENGTH DESIGN IS USED (SDS = 2.20, Δp = 1.0, |p| = 1.5, Rp = 2.5, Ω_0 = 2.5, z/h = 0)

WEIGHT = 1225 LB

HORIZONTAL FORCE (Emh) = 2.48 Wp = 3038 LB

VERTICAL FORCE (E_V) = 0.44 W_D = 539 LB

BOLT FORCES:

BOLT SPECS: 5/8" HILTI KB-TZ

 $\Phi T = 0.75 \Phi Nn = 2508 LB/BOLT (TENSION)$

 $\Phi V = \Phi V n = 4940 LB/BOLT (SHEAR)$

TENSION (T)

$$T_{\text{U MAXIMUM}} = \left[\frac{3038\#(28.9^{\circ})'(14.16^{\circ})}{1 \text{ BOLT } (38.6^{\circ})'(26.26^{\circ})'} \times (0.3) \right] + \frac{3038\#(28.9^{\circ})'(19.5^{\circ})}{1 \text{ BOLT } (26.26^{\circ})'(38.6^{\circ})} - \frac{(1225\#(0.9) - 539\#)(14.16^{\circ})'(19.5^{\circ})}{1 \text{ BOLT } (26.26^{\circ})'(38.6^{\circ})} = 1903 \text{ LB/BOLT (MAX)}$$

$$(\text{HORIZ - FRONT TO BACK}) \qquad (\text{HORIZ - SIDE TO SIDE}) \qquad (\text{WEIGHTI(0.9) - Ev})$$

SHEAR (V)

$$V_{u \text{ MAXIMUM}} = \frac{3038 \# (14.16'')}{2 \text{ BOLTS} (26.26'')} = 819 \text{ LB/BOLT (MAX)}$$

UNITY CHECK:

$$\left(\frac{\mathsf{Tu}}{\Phi\mathsf{T}}\right) \,+\, \left(\frac{\mathsf{Vu}}{\Phi\mathsf{V}}\right) \leq 1.2 \qquad \left(\frac{1903}{2508}\right) \,+\, \left(\frac{819}{4940}\right) \ = 0.93 \,\leq\, 1.2 \quad \text{°.} \ \underline{O.K.}$$

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

OF

PATTERSON-KELLEY CO.

P-K MACH 'n' ROLL MnR1050

DES. J. ROBERSON 11-1535

12/4/15 DATE

JOB NO.

SHEET

UPPER FLOOR

SHEETS

SEISMIC ANCHORAGE

FRONT ELEVATION

NOTES:

FORCES ARE DETERMINED PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10.

STRENGTH DESIGN IS USED. (SDS = 2.20, 2p = 1.0, p = 1.5, 2p = 2.5, 2/h < 1)

HORIZONTAL FORCE (En) = 1.58 Wp VERTICAL FORCE (Ev) = 0.44 Wp

- 2. CENTER OF GRAVITY (C.G.) AND WEIGHT ARE THE GOVERNING PARAMETERS FOR DESIGN, THESE CALCULATIONS ENCOMPASS ALL WEIGHTS UP TO THE MAXIMUM WEIGHT SHOWN.
- 3. STRUCTURAL ENGINEER OF RECORD FOR THE BUILDING SHALL PROVIDE SUPPORT STRUCTURE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN IN COMBINATION WITH ALL OTHER LOADS THAT MAY BE PRESENT.

EASE

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

OF

PATTERSON-KELLEY CO.

P-K MACH 'n' ROLL MnR1050

JOB NO. 11-1535
DATE 12/4/15

2

SEISMIC ANCHORAGE

UPPER FLOOR

SHEETS

SIDE ELEVATION

LOADS: PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10.

STRENGTH DESIGN IS USED (SDS = 2.20, Ap = 1.0, Ip = 1.5, Rp = 2.5, $\mathrm{z/h} \leq 1$)

WEIGHT = 1225 LB

HORIZONTAL FORCE (En) = 1.58Wp = 1936 LB

VERTICAL FORCE (E_v) = 0.44W_p = 539 LB

BOLT FORCES:

BOLT SPECS: 5/8"ø (A36) THREADED ROD

ΦT= 10,016 LB/BOLT (TENSION)

ΦV= 5342 LB/BOLT (SHEAR)

TENSION (T)

$$T_{\text{U MAXIMUM}} = \left[\frac{1936\#(28.9^{\text{u}})'(14.16^{\text{u}})}{1 \text{ BOLT } (38.6^{\text{u}})'(26.26^{\text{u}})} \times (0.3) \right] + \frac{1936\#(28.9^{\text{u}})'(19.5^{\text{u}})}{1 \text{ BOLT } (26.26^{\text{u}})'(38.6^{\text{u}})} - \frac{(1225\#(0.9) - 539\#)(14.16^{\text{u}})'(19.5^{\text{u}})}{1 \text{ BOLT } (26.26^{\text{u}})'(38.6^{\text{u}})} = 1157 \text{ LB/BOLT (MAX)}$$

$$(\text{HORIZ - FRONT TO BACK}) \qquad (\text{HORIZ - SIDE TO SIDE}) \qquad (\text{WEIGHT } (0.9) - E_{\text{u}})$$

SHEAR (V)

$$V_{U MAXIMUM} = \frac{1936\#(14.16")}{2 \text{ BOLTS}(26.26")} = 522 \text{ LB/BOLT (MAX)}$$