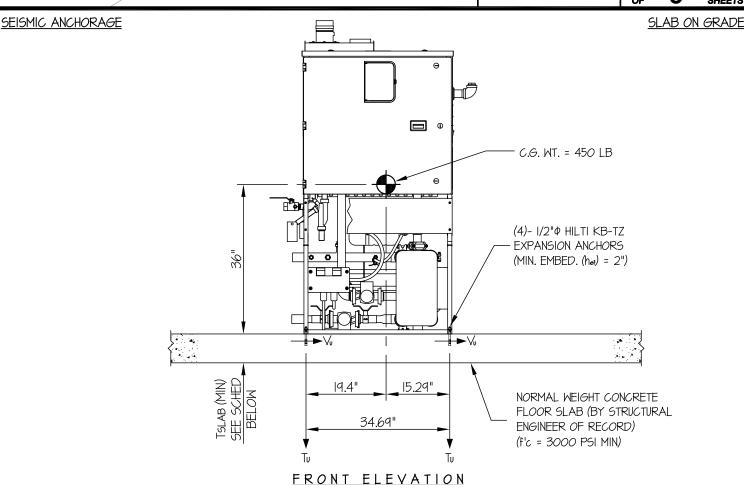
EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

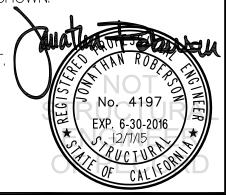
PATTERSON-KELLEY CO.


P-K MACH 'n' ROLL MnR300/399/500

DES. J. ROBERSON

JOB NO. 11-1535

DATE 12/7/15


OF 3 SHEETS

	ANCHORS						
MAX Sds	TYPE	DIAM	EFF EMBED	QTY	TSLAB	Tu (lb)	Vu (lb)
1.15	HILTI KB-TZ	1/2"	2"	4	4"	1151	212
2.20	HILTI HIT-HY	1/2"	3.25"	4	6"	2361	407

NOTES:

- 1. FORCES ARE DETERMINED PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10 STRENGTH DESIGN IS USED. ($a_p = 1.0$, $l_p = 1.5$, $R_p = 2.5$, $\Omega_0 = 2.5$, z/h = 0)
- 2. CENTER OF GRAVITY (C.G.) AND WEIGHT ARE THE GOVERNING PARAMETERS FOR DESIGN, THESE CALCULATIONS ENCOMPASS ALL WEIGHTS UP TO THE MAXIMUM WEIGHT SHOWN.
- 3. STRUCTURAL ENGINEER OF RECORD FOR THE BUILDING SHALL PROVIDE SUPPORT STRUCTURE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN IN COMBINATION WITH ALL OTHER LOADS THAT MAY BE PRESENT.

EASE

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

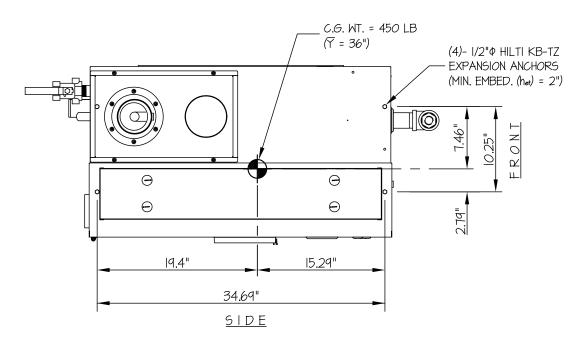
PATTERSON-KELLEY CO.

P-K MACH 'n' ROLL MnR300/399/500

DES. J. ROBERSON

JOB NO. 11-1535

DATE 12/7/15


SHEET 2

SEISMIC ANCHORAGE

MAX Sps ≤ 1.15

SLAB ON GRADE

SHEETS

PLAN AT BASE

LOADS: PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10.

STRENGTH DESIGN IS USED (SDS = 1.15, Ap = 1.0, Ip = 1.5, Rp = 2.5, $\Omega_0 = 2.5$, z/h = 0)

WEIGHT = 450 LB

HORIZONTAL FORCE (Emh) = 1.29 Wp = 581 LB

VERTICAL FORCE (E_V) = 0.23 W_p = 104 LB

BOLT FORCES:

BOLT SPEC: 1/2" HILTI KB-TZ:

 $\phi T = 0.75 \phi Nn = 1284 LB/BOLT (TENSION)$

 $\phi V = \phi V n = 1844 LB/BOLT (SHEAR)$

TENSION (T)

$$T_{\text{U MAXIMUM}} = \left[\frac{581\#(36")(7.46")}{1 \text{ BOLT } (34.69")(10.25")} \times (0.3) \right] + \frac{581\#(36")(19.4")}{1 \text{ BOLT } (10.25")(34.69")} - \frac{(450\#(0.9) - 104\#)(19.4")(7.46")}{1 \text{ BOLT } (34.69")(10.25")} = 1151 \text{ LB/BOLT } (\text{MAX})$$

$$(\text{HORIZ - SIDE TO SIDE}) \qquad (\text{HORIZ - FRONT TO BACK}) \qquad (\text{WEIGHTI(0.9) - Ev})$$

SHEAR (V)

$$V_{u \text{ MAXIMUM}} = \frac{581 \# (7.46")}{2 \text{ BOLTS } (10.25")} = 212 \text{ LB/BOLT (MAX)}$$

UNITY CHECK:

$$\left(\frac{\mathsf{Tu}}{\Phi\mathsf{T}}\right) + \left(\frac{\mathsf{Vu}}{\Phi\mathsf{V}}\right) \leq 1.2 \qquad \left(\frac{1151}{1284}\right) + \left(\frac{212}{1844}\right) = 1.01 \leq 1.2 \qquad \text{$$\circ$} \underline{\mathsf{O.K.}}$$

EASE

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

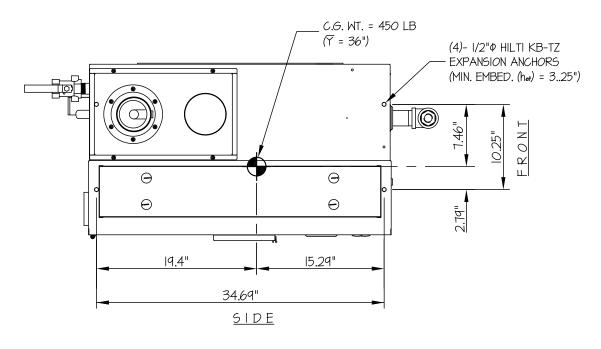
www.EquipmentAnchorage.com

PATTERSON-KELLEY CO.

P-K MACH 'n' ROLL MnR300/399/500

DES. J. ROBERSON

JOB NO. 11-1535


DATE 12/7/15

3 SHEETS

SEISMIC ANCHORAGE

1.15 < MAX Sps < 2.20

SLAB ON GRADE

PLAN AT BASE

LOADS: PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10.

STRENGTH DESIGN IS USED (SDS = 2.20, Δp = 1.0, |p| = 1.5, Rp = 2.5, Ω_0 = 2.5, z/h = 0)

WEIGHT = 450 LB

HORIZONTAL FORCE (Emh) = 2.48 Wp = 1116 LB

VERTICAL FORCE (Ev) = 0.44 Wp = 198 LB

BOLT FORCES:

BOLT SPEC: 1/2" HILTI KB-TZ:

\$\phi = 0.75 \phi Nn = 2625 LB/BOLT (TENSION)

1/4 1/4 0.757 LB/(2017 (CUTAB))

 $\phi V = \phi V n = 3572 LB/BOLT$ (SHEAR)

TENSION (T)

$$T_{\text{U MAXIMUM}} = \left[\frac{1116\#(36")(7.46")}{1 \text{ BOLT } (34.69")(10.25")} \times (0.3) \right] + \frac{1116\#(36")(19.4")}{1 \text{ BOLT } (10.25")(34.69")} - \frac{(450\#(0.9) - 198\#)(19.4")(7.46")}{1 \text{ BOLT } (34.69")(10.25")} = 2361 \text{ LB/BOLT } (\text{MAX})$$

$$(\text{HORIZ - FRONT TO BACK}) \qquad (\text{HORIZ - SIDE TO SIDE}) \qquad (\text{WBGHT[0.9] - Ev})$$

SHEAR (V)

$$V_{u \text{ MAXIMUM}} = \frac{1116\#(7.46")}{2 \text{ BOLTS (10.25")}} = 407 \text{ LB/BOLT (MAX)}$$

UNITY CHECK:

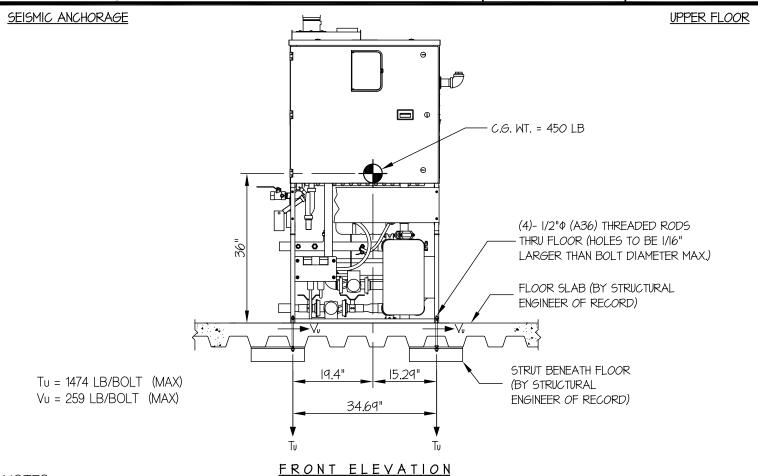
$$\left(\frac{\mathsf{Tu}}{\mathsf{\Phi}\mathsf{T}}\right) + \left(\frac{\mathsf{Vu}}{\mathsf{\Phi}\mathsf{V}}\right) \leq 1.2 \qquad \left(\frac{2361}{2625}\right) + \left(\frac{407}{3572}\right) = 1.01 \leq 1.2 \qquad \text{\circ our}$$

EASE

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

PATTERSON-KELLEY CO.

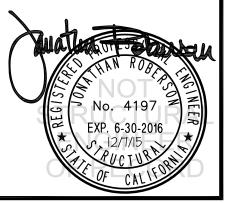

P-K MACH 'n' ROLL MnR300/399/500

DES. J. ROBERSON

JOB NO. 11-1535

DATE 12/7/15

OF 2 SHEETS


NOTES:

1. FORCES ARE DETERMINED PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10.

STRENGTH DESIGN IS USED. (Sps = 2.20, $a_p = 1.0$, $l_p = 1.5$, $R_p = 2.5$, z/h < 1)

HORIZONTAL FORCE (En) = 1.58 Wp VERTICAL FORCE (Ev) = 0.44 Wp

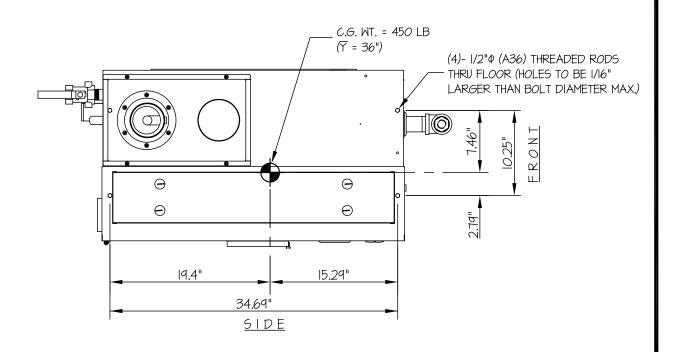
- CENTER OF GRAVITY (C.G.) AND WEIGHT ARE THE GOVERNING PARAMETERS FOR DESIGN.
 THESE CALCULATIONS ENCOMPASS ALL WEIGHTS UP TO THE MAXIMUM WEIGHT SHOWN.
- 3. STRUCTURAL ENGINEER OF RECORD FOR THE BUILDING SHALL PROVIDE SUPPORT STRUCTURE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN IN COMBINATION WITH ALL OTHER LOADS THAT MAY BE PRESENT.

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

OF

PATTERSON-KELLEY CO.


P-K MACH 'n' ROLL MnR300/399/500

DES. J. ROBERSON 11-1535 JOB NO. 12/7/15 DATE

SHEETS

SEISMIC ANCHORAGE

UPPER FLOOR

PLAN AT BASE

LOADS: PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10.

STRENGTH DESIGN IS USED (SDS = 2.20, Δp = 1.0, lp = 1.5, Rp = 2.5, $z/h \le 1$)

WEIGHT = 450 LB

HORIZONTAL FORCE (Eh) = 1.58Wp = 711 LB

VERTICAL FORCE (Ev) = 0.44Wp = 198 LB

BOLT FORCES:

BOLT SPECS: 1/2"ø (A36) THREADED ROD

φT= 6395 LB/BOLT (TENSION)

φV= 3410 LB/BOLT (SHEAR)

TENSION (T)

$$T_{\text{U MAXIMUM}} = \left[\frac{711\#(36'')(7.46'')}{1 \text{ BOLT } (34.69'')(10.25'')} \times (0.3) \right] + \frac{711\#(36'')(19.4'')}{1 \text{ BOLT } (10.25'')(34.69'')} - \frac{(450\#(0.9) - 198\#)(19.4'')(7.46'')}{1 \text{ BOLT } (34.69'')(10.25'')} = 1474 \text{ LB/BOLT (MAX)}$$

$$(\text{HORIZ - FRONT TO BACK}) \qquad (\text{HORIZ - SDE TO SDE}) \qquad (\text{WEIGHT } (0.9) - E_{\text{V}})$$

SHEAR (V)

$$V_{U MAXIMUM} = \frac{711\#(7.46")}{2 \text{ BOLTS } (10.25")} = 259 \text{ LB/BOLT (MAX)}$$