PATTERSON-KELLEY

MACH® C2500
GAS-FIRED BOILER

C.S.A. Design-Certified
Complies with ANSI Z21.13/CSA 4.9
Gas-Fired Low Pressure Steam and Hot Water Boilers

ASME Code, Section IV
Certified by Patterson-Kelley

C.S.A. Design-Certified
Complies with ANSI Z21.13/CSA 4.9
Gas-Fired Low Pressure Steam and Hot Water Boilers

Model #:_________ Serial #___________________________

Start-Up Date: _______________________

100 Burson Street, P.O. Box 458,
East Stroudsburg, PA  18301
Telephone:  (877) 728-5351,
Facsimile:  (570) 476-7247
www.pkboilers.com

©2009 Patterson-Kelley, A Harsco Company
**WARNING** If the information in this manual is not followed exactly, a fire or explosion may result causing property damage, personal injury or loss of life.

Do not store or use gasoline or other flammable vapors or liquids in the vicinity of this or any other appliance.

Installation and service must be performed by a qualified installer, service agency, or the gas supplier.

---

**WARNING** It is essential to read, understand, and follow the recommendations of this manual before installing, operating, or servicing this equipment.

---

**WARNING** Installation and service must be performed by a qualified and knowledgeable individual who has been trained on the Patterson-Kelley MACH® boiler. The same features which permit this boiler to achieve high-efficiency performance make it unlike most other boilers of this general size, so it is important to understand how this boiler operates.

---

**What to do if you smell gas:**

- Do not try to light any appliance.
- Do not touch any electrical switch; do not use any phone in your building.
- Immediately call your gas supplier from a neighbor’s phone. Follow the gas supplier’s instructions.
- If you cannot reach your gas supplier, call the fire department.
1 INTRODUCTION

The P-K MACH® C2500 Gas-Fired Boiler is fully modulating using a variable speed combustion blower, sophisticated microprocessor controls, modulating gas safety shut off / control valves and a unique aluminum alloy heat exchanger capable of operating in a fully condensing mode to provide maximum efficiency in a minimum amount of space. The high-quality materials and thoroughly tested design of the boiler should provide years of trouble-free service if the instructions in this manual are followed carefully.

This manual covers installation of P-K MACH® C2500 Boiler. The model number may be followed by a prefix or suffix letter in some cases to indicate special features or different options.

While details may differ slightly, basic operation is the same for all models. Check the rating plate for correct fuel usage and gas pressures.

The boiler is only a part of the complete heating system. This boiler may be fully operational and yet because of poor circulation, control, or other operating characteristics, not deliver heat to the desired location. Additional equipment such as temperature sensors, pumps, flow switches, balancing valves, and check valves will be required for satisfactory operation of any system. Patterson-Kelley cannot be responsible for the design or operation of such systems and a qualified engineer or contractor must be consulted.

2 SAFETY

2.1 GENERAL

The MACH® C2500 gas-fired boiler must be:

- Installed, operated, and serviced in accordance with instructions contained in this manual and other supplemental manuals.
- Installed by qualified personnel in accordance with designs prepared by qualified facility engineers including: structural, mechanical, electrical, and other applicable disciplines.
- Operated and serviced in accordance with a comprehensive safety program determined and established by the customer. Do not attempt to operate or service until such a program has been established.
- Operated and serviced by experienced, qualified, and properly trained personnel in accordance with all applicable codes, laws, and regulations.

NOTICE! Each safety device must be maintained and checked per the recommended schedule. Refer to Section 5.1 of this manual.

2.2 TRAINING

Proper training is the best protection against accidents.

It is essential to read, understand, and follow the recommendations of this manual before installing, operating, or servicing this equipment. Failure to do so could result in fire or explosion and serious injury, death, and/or property damage.
Operating and service personnel must be thoroughly familiar with the basic construction of the P-K MACH® C2500 boiler, the use and locations of the controls, the operation of the boiler, adjustment of its various mechanisms, and all applicable safety precautions. If any of the provisions of this manual are not fully and completely understood, contact the Patterson-Kelley Sales Department toll-free at (877) 728-5351 for assistance.

2.3 Safety Features

It is the responsibility of the customer to maintain the safety features, such as but not limited to: guards, safety labels, safety controls, interlocks, lockout devices, in place and operable.

2.4 Safety Labels

The following words are used in this manual to denote the degree of seriousness of the individual hazards.

- **DANGER**: indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury. This signal word is to be limited to the most extreme situations.

- **WARNING**: indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

- **CAUTION**: indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury. It may also be used to alert against unsafe practices.

**NOTICE/NOTE** - NOTICE is the preferred signal word to address practices not related to personal injury. The safety alert symbol is not used with this signal word.

The safety labels shown above are affixed to your boiler. Although the labels are of high quality, they may become dislodged or unreadable over time. Contact Patterson-Kelley toll-free at (877) 728-5351 for replacement labels.
2.5 **SAFETY PRECAUTIONS**

Provide a suitable location for the boiler, away from normal personnel traffic, with adequate working space, adequate clearances, proper ventilation and lighting, with a structure sufficiently strong and rigid to support the weight of the boiler, all piping, and accessories.

### 2.5.1 Electrical Hazards

- Shock hazard! Properly lockout/tagout the electrical service and all other energy sources before working on or near the boiler.
- Shock hazard! Do not spray water directly on this boiler or on any electrical components.
- Electrical hazard! Do not alter wiring connections.

### 2.5.2 Burn, Fire, and Explosion Hazards

- Burn, fire, and explosion hazards! Installation must be in strict conformance to all applicable codes and standards including NFPA 54, ANSI Z223.1 and CAN/CSA B.149. Install all required vent lines for gas devices. Refer to Section 3.6.
- Hazard from incorrect fuels! Possible fire, explosion, overheating, and damage. Do not use any fuels except the design fuels for the unit.
- Overfire hazards! High pressure in gas supply could result in overfiring of this or other devices supplied from the same source.
- Fire and explosion hazards! Close the main gas shutoff before servicing boiler.
- Fire and explosion hazards! Do not store or use gasoline or other flammable vapors or liquids in the vicinity of this or any other gas fired appliance.
- Burn hazard! Possible hot surfaces. Do not touch gas vent during firing operation. Use only factory recommended vent components.
- Burn hazard! Pipes, vents, and boiler components could be hot. Do not touch piping or stack surfaces during operation or immediately after shutdown of the boiler.
- Burn hazard! Hot fluids. Use caution when servicing or draining boiler.
- Fire and explosion hazards! Use caution when servicing burner. Propane (LPG) is heavier than air and may linger in the combustion chamber, vent lines, or elsewhere.
- Gas leak hazard! Make sure the burner is installed correctly and blower/transition is securely fastened following any maintenance performed on them. These connections may leak gas if assembled incorrectly.
- Gas leak hazard! All threaded gas connections must be made using a pipe compound that is resistant to liquefied petroleum gas. **Do not** use Teflon™ tape on threaded gas piping.
- Gas leak hazard! Check entire gas train for leaks after installation. If there is a smell of gas, shut down the boiler and obtain immediate assistance from trained service personnel and/or your local fire department.
- Overfire hazard! Possible fire and explosion from excess gas pressure. Make sure that gas inlet pressure does not exceed 14 inches W.C.
- Overfire hazard! Possible fire and explosion. Possible malfunction of regulators and/or gas safety shut off / control valves. Maintain all gas train components in good condition. Do not alter wiring connections. Annual inspection by factory-trained personnel for proper set-up and operation is recommended.
- Overfire and underfire hazards! Possible fire, explosion, overheating, and component failure. Do not attempt to adjust firing rate of the boiler. The firing rate must be adjusted **only** by factory trained personnel.
2.5.3 Crush Hazards

- Lifting hazards! Use properly rated lifting equipment to lift and position the boiler. The load is unbalanced. Test balance before lifting 3 ft. above the floor. Do not allow personnel beneath the lifted load. Refer to approximate weights in the table.

<table>
<thead>
<tr>
<th>Boiler Size</th>
<th>Weight in Pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2500</td>
<td>1,550 lbs</td>
</tr>
</tbody>
</table>

- Bump hazard from overhead ductwork and piping. Install components with adequate vertical clearance.

2.5.4 Chemical Hazards

- Chemical hazards from cleaning products. Use caution when cleaning the system. The use of professional assistance is recommended. Use safe procedures for the disposal of all cleaning solutions.

- Combustion Condensate – an acidic pH of approximately 3.0 to 5.0 can be expected. Use PVC, CPVC, or other corrosion resistant piping for drainage. Collection and disposal must be in accordance with all applicable regulations. A condensate neutralization kit is available. Please contact your local Patterson-Kelley representative.

2.5.5 Pressure Hazards

- Pressure hazard! Hot fluids. Install isolation valves on boiler water inlet and outlet. Make sure isolation valves are closed before servicing boiler.

- Pressure hazard! Hot fluids. Annually test safety relief valve for proper operation. Do not operate boiler with faulty relief valve.

2.5.6 Slip, Fall Hazards

- Tripping hazard! Do not install piping on floor surfaces. Maintain clear path around boiler.

- Slip and fall hazard! Use drip pan to catch water while draining the boiler. Maintain dry floor surfaces.

- Slip and fall hazard! Do not locate intake or exhaust terminations directly above a walkway; dripping of condensation can cause icing of the walking surface. (see section 3.5)

- Fall hazard! Do not stand on boiler.

Gas may lose its odor. Proper gas sensing equipment and procedures should be used for leak checks.
3 INSTALLATION

**WARNING**
Installation and service must be performed by a qualified installer, service agency, or gas supplier.

3.1 RECEIVING AND STORAGE

3.1.1 Initial Inspection

Upon receiving the boiler, inspect it for signs of shipping damage. Since some damage may be hidden, unpack the boiler, open the front, and side doors and inspect the boiler. Verify that the total number of pieces shown on the packing slip agrees with those actually received.

**NOTICE!** Note any damage, suspected potential damage, or shortage of materials on the freight bill and immediately notify the carrier. File all claims for shortage or damage with the carrier. Claims for hidden damages must be filed with your carrier within 7 days. The boiler carton is equipped with a “Tip (N) Tell”. If "Tip (N) Tell" arrow point is blue, that indicates that the package has been on its side or tipped over in transit.

3.1.2 Storage Prior to Installation

If the boiler is not installed immediately, it must be stored in a location adequately protected from the weather, preferably indoors. If this is not possible, then it should remain in the shipping container and be covered by a tarpaulin or other waterproof covering.

**NOTICE!** Controls and other equipment that are damaged or fail due to weather exposure are not covered by warranty.

3.2 COMPLIANCE WITH CODES


The heat exchanger is constructed and stamped in accordance with ASME Boiler and Pressure Vessel Code, Section IV for 100 psig maximum operating pressure and 220° F maximum temperature.

Installation of the boiler must conform to all the requirements of all national, state and local codes established by the authorities having jurisdiction or, in the absence of such requirements, to the National Fuel Gas Code, ANSI Z223.1/NFPA 54, latest edition in the U.S. In Canada, the equipment shall be installed in accordance with the current Installation Code for Gas Burning Appliances and Equipment, CAN/CSA-B.149, latest edition, and applicable Provincial Regulations for the class, which should be carefully followed in all cases. Authorities having jurisdiction should be consulted before installations are made.

Where required by local codes, the installation must conform to American Society of Mechanical Engineers Safety Code for Controls and Safety Devices for Automatically Fired Boilers (ASME CSD-1).

In the Commonwealth of Massachusetts (a) this unit must be installed by a licensed pipe fitter / plumber, (b) field installed gas cocks must be “T” handle type, (c) piping of condensate shall conform to the State Plumbing Code, and (d) refer to the Massachusetts Supplement for further details.
3.3 Setup

3.3.1 Foundation and Placement

Provide a firm, level foundation, preferably of concrete.

**WARNING** The wheels provided with this boiler are for positioning purposes only. When positioning this boiler, maintain positive control of it at all times. Do not attempt to move the boiler on surfaces that are not level. Failure to heed this warning could result in personal injury or death.

Lifting the front of the boiler slightly will allow the boiler to be rolled off the shipping skid onto the concrete foundation. Once in position, the wheel bolts may be removed allowing the wheels to recess up into the boiler. The base will sit flat on the provided foundation. If the boiler is to be pulled out for maintenance, the wheels may be left attached.

3.3.2 Placement

The boiler must be level to function properly. There are six 9/16" holes in the base that may be used for 3/8" seismic anchors.

**NOTICE!** The boiler may be installed on a combustible floor; however, the boiler must never be installed on carpeting.

3.3.3 Clearances

If the boiler is to be installed near combustible surfaces, the minimum clearances shown in the pictures and table below must be maintained. Failure to provide for the service access clearances, even with non-combustible surfaces, may cause future problems servicing the boiler. Maintain a clearance from the vent to combustible surfaces of 18" or as specified in the vent manufacturer's listed installation instructions. The boiler must be installed in a space large in comparison to the boiler as described in the National Fuel Gas Code, ANSI Z223.1, latest edition.
### 3.4 Electrical Connections

The boiler is wired for 120 volts, single phase, 60 hertz. The total operating amperage is indicated on the rating nameplate. Each C2500 boiler requires less than 17 amps. Before starting the boiler, check to ensure that the proper electrical service is connected to the boiler.

An external electrical disconnect (not supplied with the boiler) is required. The boiler electrical service must be installed and grounded in accordance with local codes or in the absence of such requirements, in the U.S. with National Electrical Codes, ANSI/NFPA No. 70 latest edition or, in Canada, to the Canadian Electrical Code, Part I, CSA C22.1, latest edition. Installed conduit must not block openings and must allow the side doors to be opened.

**NOTICE!** A dedicated earth ground (green wire) and neutral is required to avoid nuisance shutdowns. Do not ground through the conduit. It is also important that proper polarity be maintained.

Note: Refer to electrical wiring section (6.1) for terminal block assignments.

### 3.5 Inlet Air and Exhaust Venting

#### 3.5.1 Applicable Codes & Standards

**CODES**

United States:
- NFPA 54/ANSI Z223.1 National Fuel Gas Code
- NFPA/ANSI 211 Chimneys, Fireplaces, Vents and Solid Fuel Burning Appliances
Canada:
CAN/CSA B149.1 Installation Codes for Gas Burning Equipment

STANDARDS
UL 1738 Venting Systems for Gas-Burning Appliances, Categories II, III, and IV
ULC S636-95 Standard for Type BH Venting Systems
Air Conditioning Contractors
National Association (SMACNA)

These codes and standards contain information for the venting of gas fired appliances, including, but not limited to vent sizing, location, clearance to combustibles, and safe installation practices. The installation must comply with both the above Federal Codes and with state, provincial and local codes.

**WARNING** Design and installation of venting systems should be done only by qualified and knowledgeable venting systems personnel and in accordance with vent system manufacturer’s installation instructions. Installing a boiler or vent system using improper installation methods or materials can result in serious injury or death due to fire or asphyxiation.

**WARNING** Before connecting a boiler to a venting system, it must be determined whether the boiler is to be installed in a conventional or Direct Vent configuration. In the US, provisions for combustion and ventilation air must be in accordance with NFPA 54/ANSI Z223.1, *National Fuel Gas Code*, latest edition, or applicable provisions of the local building codes. In Canada, combustion and ventilation air openings shall comply with CAN/CSA B-149.1 *Natural Gas and Propane Installation Code*.

**WARNING** For correct installation of vent system, read all of these instructions and refer to vent manufacturer’s instructions.

Failure to use a proper vent system (types and materials), as described in this manual will void the boiler warranty and may result in rapid deterioration of the venting system, creating a health or life safety hazard.

Faulty vent installation can allow toxic fumes to be released into living areas. This may cause property damage, serious bodily injury or death.

### 3.5.1.1 Gas Vent Categories

Several codes and standards have categorized appliances in accordance with the flue gas temperature and pressure produced by the appliance. Categories are defined as follows:

- **Category I** An appliance that operates with a non-positive vent static pressure and with a vent temperature that avoids excessive condensate production in the vent.
- **Category II** An appliance that operates with a non-positive vent static pressure and with a vent temperature that may cause excessive condensate production in the vent.
- **Category III** An appliance that operates with a positive vent static pressure and with a vent temperature that avoids excessive condensate production in the vent.
- **Category IV** An appliance that operates with a positive vent static pressure and with a vent temperature that may cause excessive condensate production in the vent.
- **Direct Vent** An appliance that is constructed and installed so that all air for combustion is derived directly from outdoors and all flue gases are discharged to the outdoors.
3.5.1.2 Venting Materials for Flue/Exhaust Systems

MACH® Series boilers are Category IV appliances, which vent with a positive exhaust pressure and with a temperature that is likely to cause condensation in the vent. Therefore, any venting system used with the MACH® Series boiler must comply with the requirements for Category IV venting systems as specified in the latest edition of NFPA 54/ANSI Z223.1 in the US or the latest edition of CAN/CSA B-149.1 in Canada.

**WARNING**

The venting materials listed below are intended for the venting of gas burning appliances only. Do not use these venting materials for venting liquid or solid fuel (such as oil, kerosene, wood or coal) appliances.

Maintain clearances to combustibles as listed in the vent manufacturer’s installation instructions or as set forth in the codes and standards listed in this section.

Do not use these vent pipes for incinerators of any sort.

**This boiler is not certified for use with PVC nor CPVC venting. Use of PVC or CPVC vent may result in vent failure and possible serious injury or death.**

<table>
<thead>
<tr>
<th>Table of Acceptable Materials for Venting Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Manufactured Venting</strong></td>
</tr>
<tr>
<td>US and Canada</td>
</tr>
<tr>
<td>Factory Fabricated Metallic Vent Systems listed and labeled to UL1738 (Titled: Venting Systems for Gas-Burning Appliances, Categories II, III, and IV)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table of Applicable Vent Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Model</strong></td>
</tr>
<tr>
<td>US</td>
</tr>
<tr>
<td>CAN</td>
</tr>
</tbody>
</table>

3.5.2 Combustion Air

Combustion air must be free from dust, lint, etc. The presence of such materials in the air supplied to the burner could cause nuisance “Low Air” shutdowns or premature burner failure. The boiler should not be operated during construction while the possibility of drywall dust, demolition dust, etc. exists.

The combustion air supply must be completely free of chemical fumes which may be corrosive when burned in the boiler. Common chemicals which must be avoided are fluorocarbons and other halogenated compounds, most commonly present as refrigerants or solvents, such as freon, trichlorethylene, perchlorethylene, chlorine, etc. These chemicals, when burned, form acids which quickly attack the boiler and the boiler stack. The result is improper combustion and premature boiler failure.

**WARNING**

Under no circumstances shall the boiler room ever be under a negative pressure. Particular care should be taken when exhaust fans, compressors, air-handling units or other equipment may rob air from the boiler. Note that this equipment might be in rooms other than the boiler room.

3.5.2.1 Air Inlet Requirements – United States (NFPA 54/ANSI Z223.1 & NFPA/ANSI 211)

When air is supplied from inside the building, the total required volume shall be the sum of the required volume for all the appliances located in the mechanical room. Adjacent rooms furnished with fixed openings communicating directly with the mechanical room are considered part of the required volume. The minimum volume is 50 ft$^3$ per 1000 Btu/hr (4.8 m$^3$/kW) of installed appliance input capacity.
Openings used to connect indoor spaces to obtain the required minimum volume shall be sized as follows:

- When rooms are on the same floor, each opening shall have an area equal to 1 square inch for each 1000 Btu/hr (2200 mm² / kW) of installed appliance input capacity, but not less than 100 square inches. One opening should commence less than 12 inches above the floor and the other less than 12 inches below the ceiling. The minimum dimension of air openings shall be 3 inches.

- When rooms are on different floors, each opening shall have an area equal to 2 square inches for each 1000 Btu/hr (4400 mm² / kW) of installed appliance input capacity.

When combustion air is supplied from outside the building, the boiler room shall be provided with one or two openings to ensure adequate combustion air and proper ventilation.

When using one permanent opening, the opening shall commence within 12 inches of the ceiling and shall communicate directly with the outdoors or through a vertical or horizontal duct that communicates to the outdoors.

- Minimum free area of the opening is 1 square inch for each 3000 Btu/hr (700 mm² / kW) of installed appliance input capacity, and

- Not less than the sum of the areas of all vent connectors in the room.

When using two permanent openings, one opening shall commence within 12 inches above the floor and the other within 12 inches below the ceiling, preferably on opposite walls. The openings shall communicate directly, or by way of ducts, with free outdoor air. The minimum net free area of the openings shall be calculated in accordance with the following:

- When air is taken directly from outside the building, each opening (minimum of two, as outlined above), 1 square inch for each 4,000 Btu per hour (550 mm²/kW) of total boiler input is required.

- When air is taken from the outdoors through a vertical duct into the mechanical room, 1 square inch per 4,000 Btu per hour (550 mm²/kW) of total boiler input is required.

- When air is taken from the outdoors through a horizontal duct into the mechanical room, 1 square inch per 2,000 Btu per hour (1100 mm²/kW) of total boiler input is required.

**NOTE:**

1. The required size of openings for combustion and ventilation air shall be based on the net free area of the opening.
2. Screens shall be not smaller than ¼".
3. Motorized louvers shall be interlocked with the appliance so that they are proven open prior to main burner ignition and operation.

### Table of US Minimum area of ventilation openings per boiler (sq inches)

<table>
<thead>
<tr>
<th>MACH® MODEL</th>
<th>INDOOR AIR SUPPLY</th>
<th>OUTDOOR AIR SUPPLY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SAME FLOOR</td>
<td>DIFF FLOORS</td>
</tr>
<tr>
<td></td>
<td>DIRECT</td>
<td>VERT DUCT</td>
</tr>
<tr>
<td>C2500</td>
<td>2500</td>
<td>5000</td>
</tr>
</tbody>
</table>

### 3.5.2.2 Air Inlet Requirements – Canada (CAN/CSA B149.1)

A. Ventilation of the space occupied by fuel burning appliance(s) or equipment shall be supplied by a ventilation opening at the highest practicable point communicating with the outdoors. The total cross sectional area of the ventilation opening must be either 10% of the net free area required for combustion air or 10 sq. in. (6500 mm²), whichever is greater.

B. Use the following opening calculation for P-K MACH® or ModuFire® FD boilers:
When combustion air is supplied for a forced draft burner by natural airflow from the outdoors and there is no draft regulator or draft hood in the same space, there shall be a permanent opening with a cross sectional area not less than 1 sq. in/ 30,000 Btu/Hr (70 mm²/kW) of the total rated input to the burner(s). This opening must not interfere with the ventilation air opening defined in paragraph A.

C. Use the following opening calculation for P-K Thermific® boilers or other natural draft or fan-assist appliances:

When combustion air is supplied for natural or fan-assisted burners by natural airflow from the outdoors, there shall be a permanent opening with a cross sectional area not less than 1 sq. in/ 7000 Btu/Hr (321 mm²/kW) up to and including 1,000,000 Btu/Hr plus 1 sq. in. / 14,000 Btu/Hr (155 mm²/kW) in excess 1,000,000 Btu/Hr. This opening must be either located at or ducted to a point not more than 18 in. (450 mm) nor less than 6 in. (150 mm) above floor level. This opening is in addition to the ventilation air opening defined in paragraph A.

D. When combustion air is supplied by natural airflow into a space containing both types of appliance described in paragraphs B and C, the cross sectional area of the opening shall be not less than the sum of the cross sectional areas for all appliances in the space as calculated by the applicable method. This opening is in addition to the ventilation air opening defined in paragraph A.

E. When a duct is used to meet the requirement for combustion air supply, as described in paragraphs A through D, above, the opening of the duct shall be located so there is no possibility of cold air affecting steam or water piping, electrical equipment or mechanical equipment.

F. When combustion air is supplied by mechanical means, an airflow-sensing device must be installed. It must be wired into the pre-ignition limit string to prevent the burner from starting or to stop an operating burner in case of air supply failure.

G. When all combustion air is supplied through a make-up air heater, and the appliance is interlocked to the heater, the requirements of paragraphs A through F do not apply.

NOTE:

1. The free area of a combustion air supply opening is calculated by deducting the blockage area of any fixed louvers, grilles or screens from the total area of the opening.
2. Screens shall be not smaller than ¼”
3. Motorized louvers shall be interlocked with the appliance so that they are proven open prior to main burner ignition and operation

<table>
<thead>
<tr>
<th>MACH®</th>
<th>Required Combustion Air Opening</th>
<th>Ventilation Air Opening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Input (Btu/Hr)</td>
<td>in²</td>
</tr>
<tr>
<td>C2500</td>
<td>2,500,000</td>
<td>83</td>
</tr>
</tbody>
</table>

3.5.3 Flue Venting

This boiler is not certified for use with Type "B" vent nor with CPVC/PVC venting.

This boiler is a Category IV appliance (condensing – positive pressure) as it is defined in ANSI Z21.13/CSA 4.9, latest edition. The vent material must be as listed in the Table of Acceptable Materials for Venting Systems above. The exhaust vent can be run horizontally or vertically.

Vent installations shall be in accordance with NFPA54/ANSI Z223.1, the National Fuel Gas Code, or CAN/CSA-B149.1, the Natural Gas and Propane Installation Code, or applicable provisions of the local building codes.

3.5.3.1 VENT SIZING

The vent must be sized in accordance with the ASHRAE Systems and Equipment handbook, Chapter 30 or according to the vent manufacturer’s recommendations. When using manufactured venting systems, consult your vent supplier for correct sizing and structural support requirements.
The air inlet and vent must be sized so that the total pressure drop across the boiler is less than 0.44” w.c. This pressure drop includes both the inlet and vent ducts friction loss. For example, if the inlet air duct loss is 0.2” w.c., the vent duct loss cannot exceed 0.24 ”w.c. For systems that do not utilize an air inlet duct, the vent frictional loss cannot exceed 0.22” w.c.

### Table of Vent Design Parameters

<table>
<thead>
<tr>
<th>MACH® Model</th>
<th>Frictional Resistance</th>
<th>Stack Temperature</th>
<th>CO₂ Natural Gas</th>
<th>CO₂ LP Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2500</td>
<td>0.22” w.c.</td>
<td>220 °F</td>
<td>9.2%</td>
<td>10.4%</td>
</tr>
</tbody>
</table>

**WARNING**  
Do not use a barometric damper with this boiler. This is a positive pressure system. Flue gases may leak into the room.

**CAUTION**  
All boiler venting systems should be designed by a qualified venting professional experienced in venting system design. The information contained herein should be used as a guide only and is not intended to be used in lieu of qualified technical expertise.

### 3.5.3.2 Required Clearances

Provide clearances between combustion air intake, exhaust vent, roof and wall surfaces, doors and window, and snow line. Refer to Figure below: Termination Clearances – Forced Draft and Direct Vent Installations.


**WARNING**  
Do not locate intake or exhaust terminations directly above a walkway; dripping of condensation can cause icing of the walking surface. Maintain a minimum clearance of 4 ft (1.22 m) horizontally from any electric of gas meter, regulator or relief equipment.
Conventional Vent Systems
The following termination clearance requirements are for conventional, non-direct vent installations.
- The vent system shall terminate at least 3 ft above a forced air inlet within 10 feet horizontally.
- The vent system shall terminate at least 4 ft below, 4 ft horizontally from or 1 ft above any door, operable window or gravity inlet into any building. The bottom of the vent terminal shall be at least 12 in. above grade or highest expected snow line (if applicable).
- Through the wall terminations shall not terminate over public walkways or over an area where condensate or vapor could create a nuisance or hazard or could be detrimental to the operation of regulators, relief valves or other equipment.

Direct Vent (Sealed Combustion) Systems
- The vent terminal shall be located at least 12 in. from any air opening into a building. The bottom of the vent terminal shall be at least 12 in. above grade. Both the vent and air intake terminals must be at least 12 in. above the highest expected snow line.
- Through the wall terminations shall not terminate over public walkways or over an area where condensate or vapor could create a nuisance or hazard or could be detrimental to the operation of regulators, relief valves or other equipment.

Interior Component Installation
All vent system components shall be installed so as to maintain the following required minimum clearances:

<table>
<thead>
<tr>
<th>Component</th>
<th>Combustible</th>
<th>Non-Combustibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unlisted single wall metal pipe</td>
<td>Do NOT Use</td>
<td>Do NOT Use</td>
</tr>
<tr>
<td>Single wall CPVC/PVC pipe</td>
<td>Do NOT Use</td>
<td>Do NOT Use</td>
</tr>
<tr>
<td>UL 1738 listed Category IV vent</td>
<td>Per manufacturer’s listing</td>
<td>Per manufacturer’s listing</td>
</tr>
</tbody>
</table>

NOTICE! Make sure that the weight of the vent is **not supported** by the boiler vent collar. **The collar is not designed to support the weight of the vent.** Horizontal vent sections shall be supported in a manner to prevent sags or low spots where condensate can collect. Structural supports must be connected to building elements of sufficient strength to withstand the weight of the vent system and any bending forces imposed by the venting system.

### 3.5.3.3 Flue Connection

**WARNING** The boiler vent should not be connected into any portion of another mechanical draft system without consulting the vent manufacturer. The boiler shall not be connected to any part of a vent system serving a Category I or II appliance, nor shall a Category I or II appliance be connected to any part of the vent system serving this appliance. Improper interconnection of venting systems may result in leakage of flue gases into occupied spaces.

The connection from the boiler to the vent should be as direct as possible and the upward slope of any horizontal breaching should be at least 1/4 inch per linear foot.

The complete exhaust with drain system is shown in the figures below. The boiler connector (provided) is designed to accept a 10” OD nominal pipe. This connector incorporates provisions to drain condensate formed in the vent system using a 3/4” OD drain stub. This drain stub should be connected with the condensate drain on the boiler. The condensate drains shall have a 4” tall trap to prevent the passage of flue gases through the condensate system.
3.5.3.4 Vent Terminations

Vertical vents are allowed to be terminated with a variety of ends, including stub stock, exit cone, vent tee or unrestrictive cap, as shown below. Horizontal vents must be terminated as illustrated in section 3.5.4. A birdscreen with 1" x 1" openings is recommended for the termination.

The vent shall extend at least three (3) feet above the roof, or at least two (2) feet above the highest part of any structure within ten (10) feet of the vent. This is illustrated in the following diagram.

To prevent the possible re-circulation of flue gases, the vent designer must take into consideration such things as prevailing winds, eddy zones, building configurations, etc. Patterson-Kelley can not be responsible for the effects such adverse conditions may have on the operation of the boilers. Dimensions listed above are minimums and may not be sufficient for conditions at a specific job site.

3.5.4 Sealed Combustion/Direct Vent Systems

The MACH® Series Boilers are also certified for operation with a sealed combustion air and pressurized venting system. Such a system employs a sealed combustion air intake duct leading from outdoors and a sealed exhaust vent terminating outdoors. Air flow through the system is maintained by the combustion air fan. Allowable configurations of vent and air intake terminations are illustrated to the right. Note, drains have been omitted for clarity.

The combined pressure drop of the air supply duct and exhaust vent must not exceed 0.44" w.c. This total pressure drop can be distributed over the intake or exhaust as needed for the installation. The MACH® C2500 Boiler is certified for direct sidewall venting with a sidewall air inlet only.
Both the air inlet and the exhaust vent must terminate on the same wall of the building and must utilize the same type of termination fitting with the same orientation. Allowable termination fittings are: 90° elbows, tees, or straight vents.

**NOTICE!** Do not install this boiler with sidewall vent and room air inlet!

The figure above shows the sidewall penetration requirements. The exhaust vent must be at least 3 feet above the air intake. The air intake and exhaust vent must extend at least 12 inches from the exterior wall.

### 3.5.4.1 Intake Duct Materials and Sizes

**Air Requirements – SCFM**

<table>
<thead>
<tr>
<th>MACH® MODEL</th>
<th>Required SCFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2500</td>
<td>584</td>
</tr>
</tbody>
</table>

The air intake duct can be fabricated from PVC, CPVC, single wall galvanized steel, or other suitable materials. The duct must be rigid enough to maintain the full required cross sectional area under all operating conditions. Proper sealing of the intake ductwork is necessary to prevent infiltration of air from conditioned space. Joints in PVC or CPVC must be cemented. For galvanized duct, wrap each joint and seam with adhesive aluminum tape or other sealant. Connect the air supply duct to the inlet air collar on the boiler. The air inlet collar is 11.875" OD. Fasten the air inlet duct to the collar with sheet metal screws and seal with aluminum tape or sealant. The installation of a birdscreen on the intake termination is recommended. Ensure that the screen does not become blocked with snow, ice, insects etc.

### 3.5.5 Venting for Multiple Boilers

The venting instructions in this manual apply to a **single** boiler.

**Venting systems for multiple boilers must be designed by experienced and knowledgeable professionals and verified by the stack manufacturer.** The venting system must prevent backflow of exhaust gas through idle boilers which are not operating.

### 3.5.6 Removing an Existing Boiler

(from a common venting system)

When an existing boiler is removed from a common venting system, the common venting system is likely to be too large for proper venting of the appliances remaining connected to it.

At the time of removal of an existing boiler, while the other appliances remaining connected to the common venting system are not in operation, the following steps should be followed with each appliance remaining connected to the common venting system placed in operation:

1. Seal any unused openings in the common venting system.
2. Visually inspect the venting system for proper size and horizontal pitch and determine that there is no blockage or restriction, leakage, corrosion or other deficiency which could cause an unsafe condition.
3. Insofar as is practical, close all building doors and windows and all doors between the space in which the appliances remaining connected to the common venting system are located and other spaces of the building. Turn on clothes dryers and any appliances not connected to the common venting system. Turn on any exhaust fans, such as range hoods and bathroom exhausts, so they will operate at maximum speed. Do not operate a summer exhaust fan. Close fireplace dampers.
4. Place the appliance being inspected in operation. Follow the lighting instructions. Adjust the thermostat so that the appliance will operate continuously.
5. Test for spillage at the draft hood relief opening after 5 minutes of main burner operation. Use the flame of a match or candle or smoke from a cigarette, cigar or pipe.
6. After it has been determined that each appliance remaining connected to the common venting system properly vents when tested as outlined above, return doors, windows, exhaust fans, fireplace dampers and any other gas-burning appliance to their previous conditions of use.

Any improper operation of the common venting system should be corrected so the installation conforms to the National Fuel Gas Code, ANSI Z223.1 and CSA B149 Installation Code. When resizing any portion of the common venting system, the common vent system should be resized to approach the minimum size as determined using the appropriate tables in part 11 of the National Fuel Gas Code, ANSI Z223.1/NFPA 54 and/or CAN/CSA B149.1 Natural Gas and Propane Installation Code.

3.6 GAS PIPING

Before making the gas hook-up, make sure the boiler is being supplied with the type of fuel shown on the boiler nameplate.

The boiler shall be installed such that the gas ignition system components are protected from water (dripping, spraying, rain, etc.) during appliance operation and service (circulator replacement, control replacement, etc.)

The boiler is factory fire-tested and adjusted for proper combustion. The gas train components are certified to handle a maximum inlet pressure of 14” W.C. (1/2 psig.). Typical gas pressure supply for natural gas is 7” W.C. (11” W.C. for propane). If the available gas pressure exceeds 14” W.C., a suitable additional intermediate gas pressure regulator of the "lock up" type must be provided to reduce the pressure to less than 14” W.C. This boiler requires a minimum inlet gas pressure of 3.5” W.C

**WARNING** All threaded connections must be made using a pipe compound that is resistant to the action of liquefied petroleum gases. Do not use Teflon tape on gas line threads.

Install a sediment trap (drip leg) and a union connection ahead of the primary manual shutoff valve on the boiler. A gas piping schematic is shown below. Gas piping should be installed in accordance with National Fuel Gas Code, ANSI Z223.1, latest edition, and any other local codes which may apply; in Canada see CAN/CSA-B.149.1, latest edition. In the Commonwealth of Massachusetts, the gas cock must be a “T-handle type.”

RECOMMENDED GAS PIPING INSTALLATION

![Gas Piping Diagram]

**NOTICE!** See Pipe Capacity for Natural Gas chart on the following page for required pipe size, based on overall length of pipe from meter plus equivalent length of all fittings. Approximate sizing may be based on 1 cubic foot of natural gas per 1,000 Btu per hour input, i.e., 2,500,000 Btu per hour requires about 2,500 cubic feet per hour. (See "Typical Boiler Operating Conditions," Section 4.4 for more information.)
Pipe Capacity for Natural Gas

<table>
<thead>
<tr>
<th>Nominal Iron Pipe Size (Inches)</th>
<th>Internal Diameter (Inches)</th>
<th>Equivalent Pipe Length</th>
<th>Maximum Capacity in Cubic Feet of Natural Gas per Hour (in feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>90° Ell (Feet)</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>2.067</td>
<td>5.17</td>
<td>10.3</td>
</tr>
<tr>
<td>2- 1/2</td>
<td>2.469</td>
<td>6.16</td>
<td>12.3</td>
</tr>
<tr>
<td>3</td>
<td>3.068</td>
<td>7.67</td>
<td>15.3</td>
</tr>
<tr>
<td>4</td>
<td>4.026</td>
<td>10.1</td>
<td>20.2</td>
</tr>
</tbody>
</table>

3.6.1 Gas Supply Piping by Installer

The boiler and all gas piping connections should be pressure-tested and must be checked for leaks before being placed into service. Test with compressed air or inert gas if possible.

The boiler must be disconnected at the boiler manual shut-off valve (located at the end of the supplied gas train) from the gas supply piping system during any pressure testing of the system at pressures in excess of 1/2 psig (14" W.C.).

During any pressure testing of the gas supply piping system at pressures equal to or less than 1/2 psig (14" W.C.), the boiler should be isolated from the gas supply piping system by closing the manual shut-off.

Some leak test solutions, including soap and water, may cause corrosion. These solutions should be rinsed-off with water after testing.

3.7 Boiler Water Piping

3.7.1 Piping Design

Water Flow in System/Pumping Requirements

See the charts below for proper water flow requirements. Incorrect flow may result in eventual damage or premature boiler failure that may not be covered by warranty.

Proper flow rates may be achieved through a combination of primary and secondary flow loops. Multiple zones and pumps may result in different flow rates at different times. Consideration must be given to all possible conditions and their consequences. For minimum flow rates at other than maximum firing rate, see C2500 Variable Pumping (below)

<table>
<thead>
<tr>
<th>Flow</th>
<th>20 °F ΔT</th>
<th>40 °F ΔT</th>
<th>Pressure Drop (ft) at Max Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPM</td>
<td>238</td>
<td>119</td>
<td>16</td>
</tr>
</tbody>
</table>
3.7.1.1 Piping with Refrigeration Machines

When installed in a two-pipe system that provides both chilled and hot water, the control system should be configured so as to limit the time rate of change of temperature at the boiler. Consult your authorized Patterson-Kelley boiler representative for application guidance.

3.7.1.2 Piping with Air Handling Units

The boiler piping system of a hot water heating boiler connected to heating coils located in air handling units, where they may be exposed to refrigerated air circulation, must be equipped with flow control valves or other automatic means to prevent gravity circulation of the boiler water during the cooling cycle.

3.7.2 Boiler Inlet and Outlet Connections

All water connections should be in compliance with national, state and local code requirements.

Adapters from Victaulic to NPT are available from P-K.

The bottom rear connection to the boiler is the INLET and must be used for the return from the system.

NOTICE! The boiler is furnished with 3” grooved connections and Victaulic Style 75 Couplings. These couplings must be used with the EPDM Victaulic seals. Isolating valves must be installed in both water connections.

The top vertical connection to the boiler is the OUTLET and must be connected as the supply to the system.
Piping must be installed such that no piping stresses are transmitted to the boiler. The boiler shall not be used as a pipe anchor.

**NOTICE!** Condensate Trap must be piped to drain in accordance with all national, state and local codes. If installed outdoors, it must be field heat traced.

### 3.7.3 Boiler Water Piping by Installer

**Strainer**
To avoid possible contamination of the boiler with dirt, rust or sediment from the system, a strainer near the boiler inlet is strongly recommended. Even new systems may contain sufficient foreign material to eventually reduce the performance of the heat exchanger. Adequate circulation of good clean water is essential for maximum efficiency and long life of the boiler.

**Relief Valve Piping**
Each boiler is supplied with a pressure-relief valve sized in accordance with ASME requirements. The relief valve must be piped to an acceptable drain. Reducing couplings or other restrictions are not permitted in the discharge line.

**Low Water Cut-off**
The boiler is furnished with a probe-type low water cut-off; no field piping is required. If the water level in the boiler drops below the probe, the boiler will shut down and LOCKOUT LOW WATER LEVEL will be displayed on the control panel. The low water cutoff circuit will automatically reset when the low water condition clears; however the boiler controls will retain the lockout condition until the reset button on the display is depressed.

**NOTICE!** The low water cutoff probe only prevents boiler operation when the water level in the boiler is insufficient. It does not detect low water conditions in other parts of the system. Installation of additional low water safety devices to protect the system should be considered.

Installation of external limit controls may be required by certain codes or in certain installations. Review applicable local codes for details.

**Drain Valve and Piping**
A drain valve is factory installed in the boiler inlet (system return) piping. Prior to draining the boiler, electrical power and gas supply must be turned off to the boiler, and the boiler must be isolated from the system at the supply and return connections.

**NOTICE!** This drain valve is factory installed for draining of the boiler water only, not the entire system. Draining of the system through the boiler will result in depositing sediment from the system in the boiler which will result in poor heat transfer characteristics of the boiler and early boiler failure.

**Condensate Drain**
The condensate is acidic (pH between 3.0 and 5.0) and may be corrosive to some building drain systems. A condensate neutralization system may be required and is available from P-K.

**NOTICE!** Condensate Trap must be piped to drain in accordance with all national, state and local codes.

If the condensate drainage system is exposed to freezing temperatures, it must be field heat traced.

The boiler could generate up to one gallon of condensate per 100,000 BTU input. As an example, a C2500 at full fire could produce 25 gallons per hour of condensate.

### 3.7.4 Flushing and Filling

**Water Quality**
The MACH® Series boiler heat exchanger is made of an aluminum alloy. The heat exchanger requires proper water conditions to remain efficient and function properly. See Appendix B, at the end of this manual, for detailed information about water treatment.
3.8 **PRE-START CHECK LIST**

Before attempting to start the boiler, make sure the following items have been completed.

1. Inspect the gas train, blower, ignition electrode and boiler in general to be sure there was no damage during shipment or installation.
2. Flue gas from the boiler is properly vented; (refer to Section 3.5)
3. Gas connection has been made, pressure tested for leakage and the line purged of air. Make sure all required vents have been installed. (refer to Section 3.6)
4. Water connections are complete and the boiler and system have been filled and purged of air. (refer to Section 3.7)
5. The boiler is connected to a 120 volt power source with a disconnect having adequate overload protection. (refer to Section 3.4)
6. Combustion air openings are not obstructed in any way and have adequate capacity. (refer to Section 3.5)
7. The boiler is placed the proper distance from any combustible walls (refer to Section 3.3.3).
8. Relief valves have been piped to an acceptable drain. (refer to Section 3.7)
9. Condensate piping is properly connected. (refer to Section 3.7)
10. Verify system water quality is within specifications. (refer to Appendix B)

3.9 **SAFETY CHECKS**

The following checks of safety systems must be made before putting the boiler into normal operation.

Before firing the boiler refer to Section 4 for information on the use of the controls, lighting, and shut-down procedures.
25

**WARNING** Never attempt to operate a boiler that has failed to pass all the safety checks described below.

**WARNING** After checking controls by manual adjustment, make sure they are always reset to their proper settings.

**NOTICE!** If the expected error code(s) do not appear, call for qualified service.

### 3.9.1 Test of Ignition Safety System
Test the ignition system safety shutdown as follows:

1. Cycle the boiler on by generating a heat request. (The method for this will depend on your boiler configuration. See Section 3.10)
2. Place the boiler in operation at the high fire setting BNR TEST MODE HI.
3. Smoothly close the downstream manual isolation valve to reduce the gas flow and cause flame failure.
4. The display will show LOCKING FLAME FAILURE indicating a flame failure. The lockout will remain until the control is reset.

After completing this test, turn off the boiler and open the downstream manual isolation valve and turn the boiler back on.

### 3.9.2 Test of Low Water Cut-out
The boiler is furnished with a probe-type low water cut-out in the outlet nozzle. Test as follows:

Push and hold the red “Push to test” button for at least 5 seconds. A manual lockout reset error displaying LOCKOUT LOW WATER LEVEL on the display panel should occur. The LED indicator on the Low Water cut-off will no longer be illuminated.

**Optional Test Method**

First turn the boiler off, and then turn the pump off. Isolate the boiler from the system. Drain the water level below the low water cut-off probe. Turn the boiler back on. It should not operate, and a manual lockout reset error displaying LOCKOUT LOW WATER LEVEL on the display panel should occur. The LED indicator on the Low Water cut-off will no longer be illuminated.

Return the system to normal operation by refilling and restarting the boiler and pump.

### 3.9.3 Test of High-Limit Control
Fire the boiler and test the high limit control as follows:

With the main burner operating, turn down the temperature setting on the “high-limit” thermostat until the main burner shuts off. A manual reset lockout displaying LOCKING HIGH LIMIT on the display panel will occur. The high-limit switch must be manually reset prior to resetting the boiler at the display panel. Readjust the high-limit thermostat to the desired setpoint.

### 3.9.4 Test of Gas Pressure Switches

**Low Gas Pressure Switch**
The boiler is furnished with a low gas pressure switch. The operation of this switch must be checked by slowly closing the main gas cock while the burner is operating. The switch should shut down the main burner. When the gas pressure switch opens, a manual reset lockout displaying LOCKING LOW GAS PRESSURE on the display panel will occur. Upon re-opening the main gas cock, the LOCKING LOW GAS PRESSURE will remain on until the display panel is manually reset.

**High Gas Pressure Switch**

The boiler is furnished with a high pressure switch that must be checked by closing the downstream gas cock with the boiler off. When the boiler is started, it should enter its normal starting cycle and fail on high gas pressure when the automatic gas valves open. The high gas pressure switch actuation is evident when a manual reset lockout displaying LOCKING HIGH GAS PRESSURE on the display panel occurs. Upon re-opening the gas cock, the LOCKING HIGH GAS PRESSURE indicator will remain on until the display panel is manually reset.

### 3.10 INITIAL ADJUSTMENTS

#### 3.10.1 Operating Temperature Controller

The MACH® C2500 boiler is equipped with ENVI™; an intelligent control system with advanced features such as text-based display, communication capabilities, and boiler sequencing. Errors are date and time stamped providing built-in history of boiler status and performance. This control constantly tracks the load by recording burner high, low and mid run hours. One control to do it all – temperature control, flame safeguard, firing rate control, blocked flue protection, outdoor air reset, freeze protection, built-in cascade sequencing, MODBUS communication and more.

The user should become thoroughly familiar with the operation of the boiler and controls before attempting to make any adjustments.

The boiler control has a text display panel. The display panel is used to setup and monitor boiler operation by means of six push buttons MENU, BACK, ENTER, UP, DOWN, and RESET as shown above. The buttons across the bottom are used to navigate through the various screens. The four line screen shows boiler operating information on various screens. The display screen is backlit for ease of viewing. Pressing any key will illuminate the backlight.

The standby screen is shown upon startup. This screen shows the date, time, boiler status, supply temp and setpoint temp. Pushing the menu button displays a menu of options.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Back</th>
<th>Enter</th>
<th>Up</th>
<th>Down</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standby</td>
<td>Information</td>
<td>Errors</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The menu includes access to the Standby, Information, Errors, Program Parameters, Configuration, Cascade, and Service Menu. The Up and Down buttons are used to position the arrow next to the desired option and the enter button is pushed to enter that option. The list is displayed and may have more than four lines. Use the down arrow to view the complete list.
Changing parameters requires an understanding of the parameters and the functionality of the boiler. The boiler may not function properly if parameters are changed from the factory values.

3.10.2 Boiler Setpoint

The factory default setpoint is 180 °F. If a different setpoint is desired, push the menu button and then select PARAMETERS from the menu. A screen opens that allows the user to view and change operating parameters (see screenshot below.)

Select the CH settings to adjust parameters related to the boilers Comfort Heat function.

For example, selecting the Setpoint parameter opens up a screen that allows the setpoint to be changed.

The up or down buttons are used to adjust the CH setpoint up or down as desired. The enter button is pushed once the desired temperature is reached.
3.10.3 Other CH Parameters

Other settings include the following items:

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH Setpoint</td>
<td>###</td>
<td>°F</td>
</tr>
<tr>
<td>BLR OP (Off = 0, On = 1, Off/Pump On = 2, and On/Pump On = 3)</td>
<td>#</td>
<td>0-3</td>
</tr>
<tr>
<td>CH Mode</td>
<td>#</td>
<td>0-8</td>
</tr>
<tr>
<td>Hysteres On (On Differential)</td>
<td>##</td>
<td>°F</td>
</tr>
<tr>
<td>Hysteres Off (Off Differential)</td>
<td>##</td>
<td>°F</td>
</tr>
<tr>
<td>Post Pump time</td>
<td>###</td>
<td>Sec</td>
</tr>
</tbody>
</table>

Additional CH Parameters are available and used for the various CH Modes other than mode 0, the standard Setpoint & (Thermo)Stat control mode. These modes are further described in the P-K ENVI™ Advanced User's Guide.

3.10.4 Other Parameters

Other parameters include the settings for DHW (Domestic Hot Water), Boiler Settings and OEM Settings. Boiler and OEM Settings are used during the initial programming of the control and are not adjustable.

3.11 ADDITIONAL MENU ITEMS

In the main menu, Standby, Information, Errors, Program Parameters, Configuration, Cascade, and Service Menus are available. They are used for various functions of the boiler. These functions are described further in the PK ENVI™ Advanced User's Guide.

These menu items will be described briefly here:

- **STANDBY** is the default screen and is shown during normal boiler operation.
- The **INFORMATION** menu lists items that the boiler monitors such as temperatures, operating conditions, and status of switches and components.
- The **ERRORS** menu has information about the boiler status at the time of an error.
- The **PARAMETERS** menu allows the user to set up selected boiler functions and operating modes.
- The **CONFIGURATION** menu covers basic display information such as language, units, date/time, etc.
- The **CASCADE** menu is used to sequence multiple boilers (up to 24 max) in a Master/Member network system. Use of this function is described in detail in the Advanced User's Guide.
- The **SERVICE** menu is described below.

3.11.1 Service Menu:

Two test modes are available in the service menu.

- **BNR ON TEST HI LOW**
- **BNR OFF FAN HI LOW**

The first test mode allows the service technician to hold the boiler in high or low fire during firing operation so that the combustion adjustment can be performed as indicated below.
The second test mode checks the fan rate with the burner off at high speed or at low speed. These test modes will automatically terminate after 15 minutes of inactivity or can be terminated from the control/display panel by pressing the cancel/reset button.

3.11.2 Fuel/Air Adjustment

The MACH® C2500 boilers are equipped with a gas/air ratio control valve and a gas safety shut off control valve, combined into one valve assembly. The valve functions in series with the variable speed combustion blower to supply the correct gas air ratio for optimum firing performance and efficiency. The combustion blower speed is controlled automatically by the boiler controller. The blower speed determines the amount of air flow and the amount of suction/negative pressure at the gas valves. The gas valve adjusts gas flow to maintain the proper delivery pressure at the outlet of the valve.

NOTICE! Adjustments shall only be performed by qualified and knowledgeable installer or service agency specifically trained and certified to perform maintenance and/or startup on the Patterson-Kelley MACH® boiler.

3.11.2.1 Gas Pressure Adjustment

See rating plate for the minimum and maximum gas pressure of the boiler. The supply pressure during main burner operation must be greater than the minimum indicated on the rating plate. Nominal gas supply pressure is 7" W.C. for natural gas. The gas pressure must not exceed 14" W.C. which is the maximum allowable pressure on the gas train components. Each boiler is furnished with a manual shut-off valve which has an integrated test port. This port is located on the upstream side of the valve body for measuring supply pressure. (See figure left.)

The air flow is pre-set at the factory prior to shipment. Gas flow is dependent primarily on fan speed not upstream gas pressure. The automatic gas valve may have to be adjusted to obtain proper combustion readings for specific local conditions. A combustion analyzer must be used. Combustion should be set in accordance with Table 3.1.

| Table 3-1 Combustion Exhaust Reading For Setting Gas Safety Shut Off / Control Valves |
|--------------------------------|-----------------|-----------------|-----------------|
| Fuel                     | Nominal Gas Pressure | High Fire Setting | Low Fire Setting |
| Natural Gas              | 7" W.C           | % O₂, 4.8 ± 0.2 | % CO₂, 9.2 ± 0.1 | % O₂, 5.0 ± 0.2 | % CO₂, 9.1 ± 0.1 |
| Propane Gas              | 11" WC           | % O₂, 4.8 ± 0.2 | % CO₂, 10.4 ± 0.3 | % O₂, 5.0 ± 0.2 | % CO₂, 10.3 ± 0.3 |

3.11.2.2 Combustion Setup and Adjustment

Set the combustion using the Service Menu BNR ON TEST HI & BNR ON TEST LOW modes. These test modes should be used when checking and setting the gas safety shut off / control valves on the MACH®C2500 boiler. In this mode a heat request is required. Once the boiler cycles on, use the arrow keys to access the Service Menu and select the BNR ON TEST HI or the BNR ON TEST LOW mode and push enter. The boiler will ramp up to high or low fire.
**To adjust high fire:**

Required Tools: Flat head screwdriver and Combustion analyzer

Start the boiler and observe proper operating parameters for the system. Set boiler to the “BNR ON TEST HI”, as described above, to achieve maximum firing rate of the boiler. Check combustion readings using the combustion analyzer. If combustion readings are not in accordance with Table 3-1, adjust as follows: Open the front panel of the boiler. Locate the automatic gas valve. Turn the orifice adjusting screw, located on the downstream side of the valve, in the direction indicated on the sticker to increase or decrease the gas flow. Increasing the gas flow decreases the combustion exhaust O₂, while decreasing the gas flow increases the combustion exhaust O₂. There will be a slight time delay between the adjustment and the response of the CO₂/O₂ measuring instrument. Adjust the settings in small increments and allow the combustion readings to stabilize before readjusting. When desired adjustments are complete, check and adjust low fire if necessary.

**To adjust low fire:**

Required Tools: 2.5 mm hex wrench and Combustion analyzer

Start the boiler and observe proper operating parameters for the system. Set boiler to the “BNR ON TEST LOW”, as described above, to achieve minimum firing rate of the boiler. Check combustion readings using the combustion analyzer. If combustion readings are not in accordance with Table 3-1, adjust as follows: Open the front panel of the boiler. Locate the automatic gas valve. Turn the offset screw, located in the bottom center of the side of the valve, in the direction indicated on the label to increase or decrease the gas. Increasing the gas decreases the O₂, while decreasing the gas increases the O₂. There will be a slight time delay between the adjustment and the response of the CO₂/O₂ measuring instrument. Adjust the settings in small increments and allow the combustion readings to stabilize before readjusting. When desired adjustments are complete, check and adjust hi fire if necessary.

**3.11.3 Checking Flame Signal**

Using the control panel, enter the information mode and scroll down view the flame signal. This is measured in micro-amps of flame conductivity.
4 OPERATION

4.1 GENERAL

4.1.1 Control Panel Front

Become familiar with the basic operation of the boiler. The interior of the front door shows the boiler Operating Instructions.

4.1.2 Factory Tests

Safe lighting and other performance criteria were met with the gas manifold and control assembly provided on this boiler when the boiler underwent factory tests specified in ANSI Z21.13/CSA 4.9, latest edition. (See "Factory Firetest" label.)

4.2 NORMAL LIGHTING AND SHUT-DOWN PROCEDURES

WARNING  Do not use this boiler if any part has been under water. Immediately call a qualified service technician to inspect the boiler and to replace any part of the control system and any gas control which has been under water.

4.2.1 Lighting Procedures

1. Make sure the system is filled with water and water is circulating in the system. Turn on electrical supply and open the gas supply valves to the boiler.
2. Turn the on/off switch to the on position. If an error is indicated, see Section 5.5 of this manual to troubleshoot the problem and take the necessary corrective action before proceeding.
3. Set the desired high temperature limit and operating temperature. The controller will now complete the automatic firing sequence.

4.2.2 Normal Shut Down Procedures

2. Turn off electric power.
4.3 **Emergency Shut-Off**

![Main Shutoff Gas Valve]

**WARNING**

If overheating occurs or the gas supply fails to shut off, do not turn off or disconnect the electrical supply to the pump. Instead, shut off the gas supply at a location external to the boiler.

4.4 **Typical Boiler Operating Conditions**

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Input Rating (BTU/Hr)</th>
<th>Total Amperage</th>
<th>Natural Gas (1030 Btu/cu. ft.)</th>
<th>LP Gas (2500 Btu/cu. ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gas Rate (CFH)</td>
<td>Gas Rate (CFH)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Output Capacity (Btu/hr)</td>
<td>Output Capacity (Btu/hr)</td>
</tr>
<tr>
<td>C2500</td>
<td>2,500,000</td>
<td>Less than 17</td>
<td>2427</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,375,000</td>
<td>2,375,000</td>
</tr>
</tbody>
</table>

**NOTICE!** The heat exchanger is constructed and stamped for 100 psig maximum operating pressure and 220 °F maximum temperature.
5 MAINTENANCE

5.1 MAINTENANCE AND INSPECTION SCHEDULE

This schedule applies when the boiler is in use. Verify proper operation after servicing.

**WARNING** Proper lockout/ tagout procedure must be employed when servicing this unit.

**WARNING** Label all wires prior to disconnection when servicing controls. Wiring errors can cause improper and dangerous operation.

**WARNING** Use care when reassembling main gas line to assure all connections are tight.

**WARNING** Use care when servicing boiler in order to prevent the accumulation of gas in or around the combustion chamber.

**WARNING** Determine the cause of any lockout or errors before resetting the boiler. If able to determine cause of lockout, then appropriate corrective action should be taken. If unable to determine cause of the problem, call a qualified service technician. Verify proper operation after servicing.

5.1.1 Daily

Observe operating temperature and general conditions. Make sure that the flow of combustion and ventilating air to the boiler is not obstructed. Determine the cause of any service codes or lockouts on the display panel. Observe any unusual noises or operating conditions and make the necessary corrections. Notify responsible individuals for required corrective action or repair.

**WARNING** Check daily to be sure that the boiler area is free and clear of any combustible materials, including flammable vapors and liquids.

5.1.2 Weekly

Observe the conditions of the main flame. A normal high fire flame is mostly orange with a blue halo, while at low fire the burner will glow yellowish-orange.

Correct air adjustment is essential to the efficient operation of this boiler. Ensure that the flow of combustion and ventilation air is not obstructed. If an adjustment in the combustion appears necessary, the flue gas composition should be checked with a carbon dioxide (CO₂) or oxygen (O₂) analyzer and compared to the values stated in Table 3-1 of section 3.11.2.1. If an adjustment in the combustion is necessary, call a qualified and knowledgeable installer or service agency that has been trained on the Patterson-Kelley MACH® boilers.

5.1.3 Monthly

1. Using the control panel, enter the information mode and scroll down view the flame signal. This is measured in micro-amps of flame conductivity.
2. Test high-limit Control. Refer to Section 3.9.3.
3. Test operating temperature controls by reducing or increasing temperature setting as necessary to check burner operation.
4. Test the low water level cut-out. Refer to Section 3.9.2.
5. Test low gas pressure switch. Refer to Section 3.9.4.
6. Check the condensate drain system. Clean and flush as necessary.

Installation and service must be performed by a qualified and knowledgeable installer or service agency that has been trained on the Patterson-Kelley MACH® boilers.

5.1.4 Semi-Annually (required for boilers operated year round)

In addition to the recommended monthly service:
1. Clean burner of any accumulated dust or lint. See Section 5.2 on "Cleaning the Burner."
2. Inspect burner for any signs of deterioration or corrosion. Replace immediately if deterioration or corrosion is evident.
3. Check the pH level of the system fluid.
4. Inspect and clean the condensate system and check for leaks. If a condensate neutralization kit is present, open the lid and inspect the limestone rocks. If they are absent or have been significantly worn away, replace them with new limestone rocks. Use hi-calcium (or pure) limestone.

Installation and service must be performed by a qualified installer or service agency that has been trained on the Patterson-Kelley MACH® boiler.

The blower motor is permanently lubricated and does not require periodic lubrication.

5.1.5 Annually

In addition to the recommended monthly and semi-annual service:
1. Inspect and clean the inlet screen of any accumulated dust or lint.
2. Check burner and clean off any soot or foreign material that may have accumulated. See Section 5.2 on "Cleaning the Burner." Check for corrosion of the burner and its parts. If there is evidence of deterioration or corrosion, replace immediately. Inspect combustion chamber when the burner is removed for inspection. Note any signs of deterioration. Clean as necessary.
3. Inspect and clean heat exchanger. Remove the various covers to inspect the flue gas passageways. Clean the combustion side casting pins by flushing with clean water and blowing dry with compressed air. Do not use any cleaning agents or solvents. Do not use soap. A soft nylon brush may be used in accessible areas. Be sure to inspect the condensate collection pan that is the lowest part of the heat exchanger.
4. Replace the igniter and gasket.
5. Drain and flush the water side of the heat exchanger as required (separate from system flush) using clean water only.
6. Inspect and clean the condensate system and check for leaks. If a condensate neutralization kit is present, open the lid and inspect the limestone rocks. If they are absent or have been significantly worn away, replace them with new limestone rocks. Use hi-calcium (or pure) limestone.
7. Examine the venting system at least once a year. Refer to the vent manufacturer's instructions for requirements in addition to those listed below.
   a. Check all joints and pipe connections for tightness.
   b. Check pipe for corrosion or deterioration. If any piping needs replacing, do so immediately.
   c. Inspect and clean any screens in the vent terminal
8. Qualified service personnel should thoroughly inspect the heating system and correct any problems prior to re-starting the boiler.
9. Perform combustion analysis and readjust as necessary according to table 3-1 and section 3.10.4. It is recommended that a copy of this report is filed for future reference.

10. Perform a leak test of the gas valves in accordance with the manufacturer's instructions.

11. Test pressure safety relief valve.

Installation and service must be performed by a qualified installer or service agency that has been trained on the Patterson-Kelley MACH® boiler.

5.2 CLEANING THE BURNER

1. Lockout/tagout gas supply to the boiler.
2. Lockout/tagout electrical power to the boiler.
3. Open the front and side doors of the boiler.
4. Locate the blower and burner transition pieces that are directly in the front of the boiler. See 6.2.4 for illustration of components.
5. Remove the 8 nuts & 2 bolts connecting the blower transition piece to the burner transition piece. The blower transition piece is supported and remains in place.
6. Remove the 4 nuts holding the burner transition piece to the studs on the front of the boiler.
7. Pull out the burner transition piece with the 2 gaskets and set aside. Inspect the gaskets and replace if damaged.
8. Carefully remove the burner. Rinse the burner with water. Soap may be used, if needed. Rinse thoroughly.
9. Reassemble being sure to install all gaskets and seals properly.

5.3 REMOVING THE HEAT EXCHANGER

**WARNING** Heat Exchanger is heavy and may cause injury if improperly handled. Removal of the heat exchanger should be performed only by knowledgeable and experienced personnel.

5.4 AFTER ALL REPAIRS OR MAINTENANCE

1. Follow "Pre-Start Check List" (Section 3.8) and all "Safety Checks" (Section 3.9).
2. Check gas pressure. (Section 3.11.2.1). Ensure proper operation of unit
3. Perform combustion check. Adjust gas flow if necessary. (Section 3.11.2.2).

5.5 SEQUENCE OF OPERATION

1. When the Boiler On/Off switch is turned on, power is provided through a circuit breaker to the boiler control and the combustion blower.
2. If the high gas, low gas or low water level control is open, the boiler control locks out and displays an error.
3. When the water temperature is below the boiler control setpoint minus the hysteresis (On Differential), a heat request is generated.
4. Provided all limits are made, the boiler will attempt to start.
5. The controller checks that the air pressure switch is open indicating no airflow. The blower is driven towards the prestart fan speed. When the air pressure switch closes, the 25 second pre-purge time is started. After the pre-purge, the blower is driven to the ignition speed.
6. A trial for ignition begins. The sequence of events is illustrated graphically below.
7. After ignition, the fan may be driven to low fire before the boiler is released to modulation.
8. The control modulates the firing rate between low and high fire to maintain the desired outlet water temperature.

9. The burner will continue firing until the outlet water temperature reaches set point plus hysteresis (Off Differential). At this temperature the fuel supply is shut off and the combustion air fan continues to run for a 30 second post-purge.

10. When the water temperature is reduced by the load on the system, a heat request is generated. The operating sequence will recycle to step 4.

**NOTICE!** Once the boiler begins the ignition sequence, the firing sequence will continue until main flame is reached regardless of heat request. The sequence can be interrupted by turning the power switch off.

### 5.6 Troubleshooting

**WARNING** If any “Manual Reset” limit device trips, **DO NOT** reset without determining and correcting the cause. (Manual Reset Limits include: Flame safeguard, high or low gas pressure, high temperature limit, stack temperature, low water level.)

The ENVI™ boiler control will display text based error descriptions to indicate any problems with the boiler. There are two types of lockouts the control may experience: manual reset lockouts requiring an operator to press the reset button, and automatic reset lockouts that will self reset when the error condition clears. A listing of errors and their service codes is included at the end of this section.

Should the unit fail to operate, call a qualified service technician to troubleshoot the problem and implement corrective actions.

#### 5.6.1 The Loss of Power

In the event of a power failure, the display panel is not illuminated and the entire system is de-energized, closing all automatic valves and halting all boiler operations. When power is restored the sequence of operation will resume at Step 4. If any error/lockout is present when the power is lost, the control will retain that error/lockout and display the error/lockout when the power is restored.
5.6.2 Loss of Water Level
The low water switch opens when there is insufficient water level in the boiler. Lockout LOW WATER LEVEL is shown on the display, the burner operation is interrupted, and the boiler locks out. When the correct water level is re-established, and the control reset button is pressed, the boiler will reset and will start the sequence at Step 4.

5.6.3 Low Gas Pressure
The low gas pressure switch opens when there is (or has been) insufficient gas pressure available for proper operation of the boiler. If an external gas-supply shut-off valve is closed for any reason, a low gas condition will result. Locking LOW GAS PRESSURE is shown on the display, the burner operation is interrupted, and the boiler locks out. When proper gas pressure is restored, and the control reset button is pressed, the boiler will reset and will start the sequence at Step 4.

5.6.4 High Gas Pressure
The high gas pressure switch opens when there is (or has been) excessive gas pressure for the proper operation of the boiler. Locking HIGH GAS PRESSURE is shown on the display, the burner operation is interrupted, and the boiler locks out. When proper gas pressure is restored, and the control reset button is pressed, the boiler will reset and will start the sequence at Step 4.

5.6.5 High Water Temperature
When the boiler water has exceeded both the operating and high-limit temperature the high limit switch opens, and Locking HIGH LIMIT is shown on the display. When the water temperature falls below the high-limit temperature, the boiler will remain locked out until the water high limit switch is manually reset and the front panel reset button is pressed. Once reset, the control will restart the sequence of operation at Step 4.

5.6.6 Low Air
If the display panel indicates Locking AIR SWITCH NOT OPEN or Locking AIR SWITCH NOT CLOSED this indicates improper airflow through the boiler. Check the hoses leading to the air switches. Verify proper blower operation. An air switch error does not necessarily mean that the air switch is defective.

When AIR SWITCH NOT OPEN is shown on the display, check that the air switch is open when the fan is off. Check that there is no air flow through the boiler when the fan is off.

When AIR SWITCH NOT CLOSED is shown on the display, check that the air switch is closed when the fan is running. If the air switch does not close within 5 minutes during purge, the boiler locks out. Check that the burner is clean (“Cleaning the Burner,” Section 5.2) and that there are no obstructions to airflow in the intake or exhaust ducts.

5.6.7 Flame Failure
In the event of a flame failure, the main fuel valves are de-energized and a manual reset lockout occurs. Locking IGNITION FAILURE or Lockout FLAME FAILURE is shown on the display. The cause of flame failure must be diagnosed and repaired before the control is reset.

When IGNITION FAILURE is shown on the display, the boiler did not light during a trial for ignition. Check that the spark, electrode, ignition wire, and gas valve are functioning properly.

When FLAME FAILURE is shown on the display, the boiler lost the flame during run. Check that the combustion is setup properly, the gas pressure is correct, as well as other combustion parameters.

5.6.8 Flame Error
Locking LATE FLAME
Blocking FALSE FLAME
These errors signify flame error. This may be caused by a failed or leaky gas valve or a flame detector malfunction. If gas valve leakage is suspected, the unit must be isolated by turning off the main gas supply line. Qualified and knowledgeable service personnel must be called to evaluate and repair/replace the failed parts.

5.6.9 Stack Problem

BLOCKED_FLUE indicates that the high exhaust back pressure switch has tripped. This may be caused by a blocked stack, a blocked air inlet, or a blocked condensate system. When the blockage is removed, the boiler will automatically restart.

A comprehensive listing of the locking and blocking error codes is provided below.

5.7 Manual Reset Error Codes – A##

<table>
<thead>
<tr>
<th>Code</th>
<th>ENVI Display</th>
<th>Lockout</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>NED</td>
<td>Unassigned</td>
<td>No Error Description, Call For Service</td>
</tr>
<tr>
<td>A01</td>
<td>IGNITION FAILURE</td>
<td>Ignition Failure</td>
<td>During an attempt to light, no flame was detected</td>
</tr>
<tr>
<td>A02</td>
<td>FLAME FAILURE</td>
<td>Flame Failure</td>
<td>During run, the flame was lost</td>
</tr>
<tr>
<td>A03</td>
<td>HIGH LIMIT</td>
<td>High Limit</td>
<td>The temperature in the boiler exceeded the setting on the High Limit Control</td>
</tr>
<tr>
<td>A05</td>
<td>INT ERR GAS VLV RLY</td>
<td>Internal Error Gas Valve Relay</td>
<td>Call for service.</td>
</tr>
<tr>
<td>A06</td>
<td>INT ERR SAFETY RLY</td>
<td>Internal Error Safety Relay</td>
<td>Call for service.</td>
</tr>
<tr>
<td>A07</td>
<td>LOW FLOW / ILK</td>
<td>Low Water Flow or Open Interlock Jumper</td>
<td>Water Flow is Inadequate or Interlock Jumper is Open</td>
</tr>
<tr>
<td>A09</td>
<td>INTERNAL ERROR 9 or 27 or 28 or 29 or 30</td>
<td>Internal Error 9 or 27 or 28 or 29 or 30</td>
<td>Call for service.</td>
</tr>
<tr>
<td>A10</td>
<td>INT ERR E2PROM ERR</td>
<td>Internal Error E2PROM Err</td>
<td>Call for service.</td>
</tr>
<tr>
<td>A12</td>
<td>INT ERR E2PROM SIG</td>
<td>Internal Error E2PROM Sig</td>
<td>Call for service.</td>
</tr>
<tr>
<td>A13</td>
<td>INTERNAL ERROR 13</td>
<td>Internal Error 13</td>
<td>Call for service.</td>
</tr>
<tr>
<td>A14</td>
<td>INTERNAL ERROR 14</td>
<td>Internal Error 14</td>
<td>Call for service.</td>
</tr>
<tr>
<td>A15</td>
<td>INTERNAL ERROR 16</td>
<td>Internal Error 16</td>
<td>Call for service.</td>
</tr>
<tr>
<td>A16</td>
<td>INTERNAL ERROR 22</td>
<td>Internal Error 22</td>
<td>Call for service.</td>
</tr>
<tr>
<td>A18</td>
<td>INTERNAL ERROR 19</td>
<td>Internal Error 19</td>
<td>Call for service.</td>
</tr>
<tr>
<td>A19</td>
<td>LATE FLAME</td>
<td>Late Flame</td>
<td>Flame still present after boiler gas valve closed during post purge</td>
</tr>
<tr>
<td>A20</td>
<td>EARLY FLAME</td>
<td>Early Flame</td>
<td>Flame detected before boiler gas valve opened during pre purge</td>
</tr>
<tr>
<td>A30</td>
<td>HIGH GAS PRESSURE</td>
<td>High Gas Pressure Error</td>
<td>The gas pressure is too high and has tripped the HGPS</td>
</tr>
<tr>
<td>A31</td>
<td>LOW GAS PRESSURE</td>
<td>Low Gas Pressure Error</td>
<td>The gas pressure is too low and has tripped the LGPS</td>
</tr>
<tr>
<td>A32</td>
<td>INTERNAL ERROR 23</td>
<td>Internal Error 23</td>
<td>Call for service.</td>
</tr>
<tr>
<td>A33</td>
<td>FAN WRONG SPEED</td>
<td>Wrong Fan Speed Error</td>
<td>Fan deviation more than 300 rpm for &gt; 1 sec (ignored when fan &gt; 4200 rpm)</td>
</tr>
<tr>
<td>A34</td>
<td>AIR SWITCH NOT OPEN</td>
<td>Air Switch Not Open</td>
<td>Air switch does not open when fan is off</td>
</tr>
<tr>
<td>A35</td>
<td>AIR SWITCH NOT CLOSE</td>
<td>Air Switch Not Closed</td>
<td>Air switch does not close when fan is running</td>
</tr>
<tr>
<td>A37</td>
<td>UV SENSOR DEFECT</td>
<td>UV Sensor Defective</td>
<td>Self Check function of UV detector has indicated a failure</td>
</tr>
</tbody>
</table>
### Code | ENVI Display | Description
--- | --- | ---
A38 | MAX DT EXCEEDED | Maximum temperature differential across the boiler has been exceeded
A39 | RAPID RISE INLET TMP | Inlet temperature is rising too rapidly
A40 | RAPID RISE OUT TEMP | Outlet temperature is rising too rapidly
A41 | RAPID RISE HX TEMP | Temperature across heat exchanger is rising faster than allowed
A43 | LOW WATER LEVEL | Water is too low for boiler to operate
A45 | INTERNAL ERROR 31 | Call for service.

Note: When an Internal Error occurs, as identified above, the failure is internal to the ENVI™ boiler control and replacement of the ENVI™ control is required. A qualified service technician must replace the ENVI™ control.

### 5.8 AUTO-RESET ERROR CODES – E##

<table>
<thead>
<tr>
<th>Code</th>
<th>ENVI Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E01</td>
<td>OUT TEMP SENS OPEN</td>
<td>Boiler outlet water temperature sensor open circuit</td>
</tr>
<tr>
<td>E02</td>
<td>IN TEMP SENS OPEN</td>
<td>Boiler inlet water sensor temperature open circuit</td>
</tr>
<tr>
<td>E03</td>
<td>FLUE TMP SENS OPEN</td>
<td>Boiler flue gas temperature sensor open circuit</td>
</tr>
<tr>
<td>E04</td>
<td>DHW TEMP SENS OPEN</td>
<td>Domestic Hot Water temperature sensor open circuit</td>
</tr>
<tr>
<td>E05</td>
<td>HX TEMP SENS OPEN</td>
<td>Heat Exchange temperature sensor open circuit</td>
</tr>
<tr>
<td>E11</td>
<td>OUT TEMP SENS SHORT</td>
<td>Boiler outlet water temperature sensor short circuit</td>
</tr>
<tr>
<td>E12</td>
<td>IN TEMP SENS SHORT</td>
<td>Boiler inlet water sensor temperature short circuit</td>
</tr>
<tr>
<td>E13</td>
<td>FLUE TMP SENS SHORT</td>
<td>Boiler flue gas temperature sensor short circuit</td>
</tr>
<tr>
<td>E14</td>
<td>DHW TEMP SENS SHORT</td>
<td>Domestic Hot Water temperature sensor short circuit</td>
</tr>
<tr>
<td>E15</td>
<td>HX TEMP SENS SHORT</td>
<td>Heat Exchange temperature sensor short circuit</td>
</tr>
<tr>
<td>E16</td>
<td>HEADER SENS SHORT</td>
<td>Header temperature sensor on IF board has a short circuit or an open circuit</td>
</tr>
<tr>
<td>E18</td>
<td>LINE NEUTRAL REV</td>
<td>Hot and Neutral are reversed</td>
</tr>
<tr>
<td>E20</td>
<td>FALSE FLAME</td>
<td>Flame detected when no flame should be present</td>
</tr>
<tr>
<td>E22</td>
<td>NO GROUND 60 HZ ERR</td>
<td>No ground connected or voltage on ground</td>
</tr>
<tr>
<td>E23</td>
<td>LINE FREQUENCY ERR</td>
<td>Line frequency deviates from 60Hz by more than 2%</td>
</tr>
<tr>
<td>E24</td>
<td>FAULTY GROUND</td>
<td>Ground/Earth connection is not functioning correctly</td>
</tr>
<tr>
<td>E30</td>
<td>HIGH FLUE TEMP</td>
<td>Temperature of the flue gas is greater than setpoint + differential</td>
</tr>
<tr>
<td>E32</td>
<td>HIGH INLET TEMP</td>
<td>Inlet water is greater than 194°F</td>
</tr>
<tr>
<td>E34</td>
<td>BLOCKED FLUE</td>
<td>Hi exhaust back pressure switch is tripped due to excess pressure in the flue/stack or excessive negative cabinet pressure</td>
</tr>
<tr>
<td>E41</td>
<td>REVERSE FLOW IN OUT</td>
<td>The water flow through the boiler is reversed (Inlet water is hotter than outlet water)</td>
</tr>
<tr>
<td>E42</td>
<td>INTERNAL ERROR 48</td>
<td>Call for service.</td>
</tr>
<tr>
<td>E46</td>
<td>INTERNAL ERROR 35</td>
<td>Call for service.</td>
</tr>
</tbody>
</table>
6 PARTS/TECHNICAL SUPPORT

Spare parts and replacement parts can be ordered from Patterson-Kelley by calling toll free (877) 728-5351. The fax number is (570) 476-7247. Refer to the parts list shown on the assembly drawing provided in this manual. Technical information is also available at the above number and at the Patterson-Kelly website www.pkboilers.com.

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Error Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>E47</td>
<td>Internal Error 36</td>
<td>Call for service.</td>
</tr>
<tr>
<td>E48</td>
<td>Internal Error 37</td>
<td>Call for service.</td>
</tr>
<tr>
<td>E49</td>
<td>Rapid Rise HX Error</td>
<td>Temperature across heat exchanger is rising faster than allowed.</td>
</tr>
<tr>
<td>E50</td>
<td>Rapid Rise Error</td>
<td>Temperature of the Outlet water is rising faster than allowed.</td>
</tr>
<tr>
<td>E51</td>
<td>Internal Error 67</td>
<td>Call for Service</td>
</tr>
<tr>
<td>E52</td>
<td>Wrong Boiler Type</td>
<td>Control and Boiler do not match (control is programmed for another type of PK boiler)</td>
</tr>
<tr>
<td>E 54</td>
<td>IF COMM FAILURE</td>
<td>No communication with Interface Board</td>
</tr>
</tbody>
</table>

WARNING: Use of Non-Factory Authorized replacement parts are not recommended for this equipment. All control components are engineered for safety and are designed to work in unison with each of the other components. Use of non-factory authorized replacement parts jeopardizes the functionality of the safety features as well as the performance of the boiler.

When ordering replacement parts please have the **model number** and **serial number** of your boiler available. Typical schematic drawings are shown on the following pages. Drawings specific to your particular boiler can also be supplied by your local P-K representative.

6.1 WIRING DIAGRAMS

6.1.1 Terminal Block Assignments – High Voltage Circuit (TB2)

<table>
<thead>
<tr>
<th>Terminal Number</th>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>115 VAC LINE</td>
<td>Boiler Supply Power, 115 VAC, 1 ph , 60 Hz</td>
</tr>
<tr>
<td>2</td>
<td>115 VAC NEUTRAL</td>
<td>Boiler Supply Neutral, 0 VAC</td>
</tr>
<tr>
<td>3</td>
<td>115 VAC NEUTRAL</td>
<td>Neutral for use with TB2-10, Switched Output</td>
</tr>
<tr>
<td>4</td>
<td>115 VAC NEUTRAL</td>
<td>Neutral for use with TB2-11, 3 Way Valve</td>
</tr>
<tr>
<td>5</td>
<td>115 VAC NEUTRAL</td>
<td>Neutral for use with TB2-12, DHW Pump Contactor</td>
</tr>
<tr>
<td>6</td>
<td>115 VAC NEUTRAL</td>
<td>Neutral for use with TB2-13, CIRC Pump Contactor</td>
</tr>
<tr>
<td>7</td>
<td>115 VAC NEUTRAL</td>
<td>Neutral for use with TB2-14, Damper Output</td>
</tr>
<tr>
<td>8</td>
<td>GROUND</td>
<td>Boiler Supply Ground, 0 VAC</td>
</tr>
<tr>
<td>9</td>
<td>GROUND</td>
<td>Boiler Supply Ground, 0 VAC</td>
</tr>
<tr>
<td>10</td>
<td>120V SWITCHED OUTPUT</td>
<td>120V AC output when boiler is switched on (4 amp max)</td>
</tr>
<tr>
<td>11</td>
<td>120V 3 WAY VALVE</td>
<td>120V AC output during CH Mode. 3 way valve is normally closed (not powered) for DHW, and powered open for CH Mode.</td>
</tr>
</tbody>
</table>
6.1.2 Terminal Block Assignments – Low Voltage Circuit (TB1)

<table>
<thead>
<tr>
<th>Terminal Number</th>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ENABLE / DISABLE</td>
<td>Boiler Enable, Contact Closure. DO NOT ENERGIZE.</td>
</tr>
<tr>
<td>2</td>
<td>ENABLE / DISABLE</td>
<td>DO NOT ENERGIZE.</td>
</tr>
<tr>
<td>3</td>
<td>EXTERNAL INTERLOCK</td>
<td>External Limit, Contact Closure. DO NOT ENERGIZE.</td>
</tr>
<tr>
<td>4</td>
<td>EXTERNAL INTERLOCK</td>
<td>/do NOT ENERGIZE.</td>
</tr>
<tr>
<td>5</td>
<td>OUTDOOR TEMP SENSOR</td>
<td>Outdoor temperature sensor</td>
</tr>
<tr>
<td>6</td>
<td>OUTDOOR TEMP SENSOR</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>DHW STAT OR SENSOR</td>
<td>Domestic Hot Water sensor or thermostat</td>
</tr>
<tr>
<td>8</td>
<td>DHW STAT OR SENSOR</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>HEADER TEMP SENSOR</td>
<td>Header temperature sensor</td>
</tr>
<tr>
<td>10</td>
<td>HEADER TEMP SENSOR</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>DHW FLOW SWITCH</td>
<td>Domestic Hot Water flow switch</td>
</tr>
<tr>
<td>12</td>
<td>DHW FLOW SWITCH COMMON</td>
<td>DHW flow switch indicates potable water flow/usage</td>
</tr>
<tr>
<td>13</td>
<td>0-10V ANALOG INPUT</td>
<td>Variable Input (VDC) for remote control of boiler (+)</td>
</tr>
<tr>
<td>14</td>
<td>0V ANALOG INPUT</td>
<td>0V for use with TB1-13 (-)</td>
</tr>
<tr>
<td>15</td>
<td>For Future Use</td>
<td>Not Used</td>
</tr>
<tr>
<td>16</td>
<td>For Future Use</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>MODBUS COM 1A</td>
<td>Modbus connection to boiler</td>
</tr>
<tr>
<td>18</td>
<td>MODBUS COM 1B</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>CASCADE A TO A</td>
<td>Cascade connection between boilers</td>
</tr>
<tr>
<td>20</td>
<td>CASCADE B TO B</td>
<td></td>
</tr>
</tbody>
</table>
6.1.3 Wiring Diagram for MACH® C-2500
6.2 BOILER PARTS LIST

6.2.1 Main Assembly

<table>
<thead>
<tr>
<th>Mark</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cabinet Top</td>
</tr>
<tr>
<td>2</td>
<td>Boiler Outlet</td>
</tr>
<tr>
<td>3</td>
<td>Boiler Inlet</td>
</tr>
<tr>
<td>4</td>
<td>Blower/Burner Assembly</td>
</tr>
<tr>
<td>5</td>
<td>Front Control Panel</td>
</tr>
<tr>
<td>6</td>
<td>Cabinet</td>
</tr>
</tbody>
</table>
6.2.2 Control Panel

<table>
<thead>
<tr>
<th>Mark</th>
<th>Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Terminal Block 1 (TB1)</td>
<td>6 User Interface/Display Screen</td>
</tr>
<tr>
<td>2</td>
<td>Terminal Block 2 (TB2) 120 V</td>
<td>7 ENVI IF Board</td>
</tr>
<tr>
<td>3</td>
<td>High Temperature Limit</td>
<td>8 Low Water Cut Off (LWCO)</td>
</tr>
<tr>
<td>4</td>
<td>Air Switch</td>
<td>9 ENVI Main Board</td>
</tr>
<tr>
<td>5</td>
<td>High Exhaust Back Pressure Switch (HEBPS)</td>
<td>10 10 Amp Circuit Breaker</td>
</tr>
<tr>
<td>11</td>
<td>5 Amp Circuit Breaker</td>
<td>11 5 Amp Circuit Breaker</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>12 On/Off Switch</td>
</tr>
</tbody>
</table>
### 6.2.3 C2500 Heat Engine

<table>
<thead>
<tr>
<th>MARK</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Outlet Water Connection</td>
</tr>
<tr>
<td>2</td>
<td>Burner Transition</td>
</tr>
<tr>
<td>3</td>
<td>Burner Gasket</td>
</tr>
<tr>
<td>4</td>
<td>Burner</td>
</tr>
<tr>
<td>5</td>
<td>Ignition</td>
</tr>
<tr>
<td>6</td>
<td>Sight Glass Window</td>
</tr>
<tr>
<td>7</td>
<td>Outlet Water Manifold</td>
</tr>
<tr>
<td>8</td>
<td>Heat Exchanger Sectional Castings</td>
</tr>
<tr>
<td>9</td>
<td>Relief Valve</td>
</tr>
<tr>
<td>10</td>
<td>Inlet Water Connection</td>
</tr>
<tr>
<td>11</td>
<td>Boiler Drain Valve</td>
</tr>
<tr>
<td>12</td>
<td>Condensate Collector w/Rear Drain</td>
</tr>
<tr>
<td>13</td>
<td>Inlet Water Manifold</td>
</tr>
<tr>
<td>14</td>
<td>Inspection Cover</td>
</tr>
</tbody>
</table>
6.2.4 C2500 Gas Train

<table>
<thead>
<tr>
<th>Mark</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Burner</td>
</tr>
<tr>
<td>2</td>
<td>Burner Transition Piece</td>
</tr>
<tr>
<td>3</td>
<td>Blower Transition Piece</td>
</tr>
<tr>
<td>4</td>
<td>Blower</td>
</tr>
<tr>
<td>5</td>
<td>Venturi</td>
</tr>
<tr>
<td>6</td>
<td>Secondary Manual Shutoff Valve</td>
</tr>
<tr>
<td>7</td>
<td>Automatic Gas Valve</td>
</tr>
<tr>
<td>8</td>
<td>Main Gas Shutoff Valve</td>
</tr>
<tr>
<td>9</td>
<td>High Gas Pressure Switch</td>
</tr>
<tr>
<td>10</td>
<td>Low Gas Pressure Switch</td>
</tr>
<tr>
<td>11</td>
<td>High Exhaust Backpressure Switch</td>
</tr>
</tbody>
</table>
7  LIMITED WARRANTY

P-K MACH® Series Boiler

LIMITED WARRANTY

Subject to the terms and conditions herein, Patterson-Kelley Co., Seller, warrants to the original owner at the original installation site that products manufactured by Seller will be free from defects in materials and workmanship for a period of one (1) year from date of start up (the "Warranty Period"), provided that start up is completed within six months from the date of shipment. The heat exchanger and burner will be warranted for a period of (5) five years from the date of shipment (the "Warranty Period").

REMEDY

The sole remedy of this warranty is expressly limited to the repair or replacement of any part found to be defective under conditions of normal use within the Warranty Period. Installation is not included.

Warranty - The owner must notify the original installer of the Product and Seller (Attention: Patterson-Kelley Co., P.O. Box 458, East Stroudsburg, PA 18301), in writing, within the Warranty Period, providing a detailed description of all claimed defects. Transportation to the factory or other designated facility for repairs of any products or items alleged defective shall, in all events, be the responsibility and at the cost of the owner.

EXCLUSIONS

Seller shall have no liability for and this warranty does not cover:

A. Incidental, special or consequential damages, such as loss of the use of products, facilities or production, inconvenience, loss of time or labor expense involved in repairing or replacing the alleged defective Product.
B. The performance of any Product under conditions varying materially from those under which such Product is usually tested under industry standards at the time of shipment.
C. Any damage to the Product due to abrasion, erosion, deterioration, abnormal temperatures or the influence of foreign matter or energy.
D. The design or operation of owner's plant or equipment or of any facility or system of which any Product may be made a part.
E. The suitability of any Product for any particular application.
F. Any failure resulting from misuse, modification not authorized by Seller in writing, improper installation or lack of or improper maintenance.
G. Equipment furnished by the owner, either mounted or unmouted, or when contracted for by the owner to be installed or handled.
H. Leakage or other malfunction caused by:
   1. Defective installations in general and specifically, any installation which is made:
      a. in violation of applicable state or local plumbing housing or building codes,
      b. contrary to the written instructions furnished with the unit.
   2. Adverse local conditions in general and, specifically, sediment or lime precipitation in the tubes and/or headers or corrosive elements in the atmosphere.
   3. Misuse in general and, specifically, operation and maintenance contrary to the written instructions furnished with the unit, disconnection, alteration or addition of components or apparatus, not approved by Seller, operation with fuels or settings other than those set forth on the rating plate or accidental or exterior damage.
I. Production of noise, odors, discoloration or rusty water.
J. Damage to surrounding area or property caused by leakage or malfunction.
K. Costs associated with the replacement and/or repair of the unit including: any freight, shipping or delivery charges, any removal, installation or reinstallation charges, any material and/or permits required for installation, reinstallation or repair, charges to return the boiler and or components. Seller's liability under this warranty shall not in any case exceed the amount paid for the Product found to be defective.

THIRD-PARTY WARRANTIES

For goods or components not manufactured by Seller, the warranty obligations of Seller shall, in all respects, conform and be limited to one (1) year from the date of shipment.

SEVERABILITY

To the extent that any provision of this warranty would be void or prohibited under applicable law, such provisions shall be limited in effect to the minimum extent necessary to render the remaining provisions hereof enforceable.

NO OTHER WARRANTIES

Seller makes no implied warranty of merchantability or fitness for a particular purpose or other warranties with respect to any products or services except as expressly set forth in this limited warranty.

Note: Rev. January 1, 2006
## APPENDIX A MAINTENANCE LOG

<table>
<thead>
<tr>
<th>Date</th>
<th>Hi/Low Fire</th>
<th>O₂</th>
<th>CO</th>
<th>CO₂</th>
<th>Stack Temp</th>
<th>pH</th>
<th>Action</th>
<th>By</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MACH™ BOILER
FIRE-TEST REPORT

Date: _______________________

Boiler Serial # _______________________ Model #: _______________________

Installation Name: ______________________________________________________

City: _______________________ State: _______ Zip: ______________________

Installer Name: _______________________________________________________

Type of Installation: ________________________ (Hotel, School, etc.)

Fuel: Natural Gas Prepane

Outdoor Temperature Sensor Connected: [ ] Yes [ ] No

1. Factory Fire-Test: (copy from boiler label)

<table>
<thead>
<tr>
<th>Field Fire-Test</th>
<th>DATE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Inlet Gas</td>
<td>w.c.</td>
</tr>
<tr>
<td>Carbon Dioxide (CO2)</td>
<td>%</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td>ppm</td>
</tr>
<tr>
<td>Gross Stack Temp.</td>
<td>°F</td>
</tr>
<tr>
<td>Main Flame Signal</td>
<td>Volts</td>
</tr>
</tbody>
</table>

2. Water Inlet temperature: _______ °F
3. Water Outlet temperature: _______ °F
4. Flow through boiler: _______ OPM
5. Operating Temperature Setpoint: _______ °F (from internal OR external control)
6. Approximate stack lengths: Ft. Horizontal _______ Ft. Vertical _______ Flue Pipe Diameter _______
7. Incoming Electrical Power _______ Volts a.c. [ ] Less than 1 volt between neutral and ground
8. System Water pH level _______
9. Comments

__________

Performed by: (Print Name)

Please return a copy to P-K, ATTN: Boiler Tech. Support Department
Patterson-Kelley • 100 Burson Street • E. Stroudsburg, PA 18301
Ph 570-476-7201 Fx 570-476-7247 www.pkboilers.com
9 APPENDIX 2 MACH® WATER CHEMISTRY

The MACH® boiler uses a special aluminum alloy to operate properly during full condensing service. This special alloy can withstand the acidic combustion condensate. This condensate has a pH of ~3.0 to 5.0. Having a chemical resistance to acidic environments does not guarantee a widespread chemical resistance across the whole pH range or resistance to all types of chemicals. Therefore, it is important not to use incompatible chemicals in the hydronic heating system.

Water treatment is an important subject for the MACH® boilers. If the hydronic system is filled with “normal” water and left untreated, the normal water will interact favorably with the boiler because the boiler is resistant to normal water. Normal water is defined by a neutral pH (7.0 +/- 0.5) and a lack of contaminants (including hardness ions, dirt, grease, oxidizers, chemicals, etc). In modern hydronic heating systems many different materials are used including an aluminum boiler, pipes of copper or steel, fittings of iron, plastic tubing, brass components, etc. Unfortunately some of these other materials can be damaged with normal water. For example, it is well known that steel rusts and corrodes in normal water.

Some end users decide to use water treatment products to create an environment in the hydronic system that is more amenable to the differing materials. Other end users decide to use a glycol based freeze protection product to prevent system freeze-up in the event that the pipes are exposed to freezing temperatures. Additionally, water that is abnormal sometimes requires treatment. For example, a location having high dissolved hardness might require a water softener. This decision to use chemicals in the water creates unfortunate conflicts of interest. The MACH® aluminum boiler has a factory requirement that the pH is between 6.5 and 8.5. Traditional treatment of copper and steel piping incorporates chemicals having a pH of 10 to 12. This extremely high pH is not compatible with aluminum and will reduce the boiler life. Most glycols are typically designed for steel and/or copper systems and often have a high pH. Many “standard” treatments for steel boilers utilize high potency oxidizers and oxygen scavengers. These harsh chemicals are not compatible with aluminum and will reduce the boiler life.

Many manufacturers of hydronic chemicals have products for sale that are not compatible with aluminum boilers. Other manufacturers of hydronic chemicals have products for sale that are compatible with aluminum boilers.

The water chemistry requirements for the P-K MACH® Boiler are as follows:

- The pH must be between 6.0 and 8.5.
- The hydronic heating system must be a closed loop system. Makeup water should not be more than 0.5% of the total within any 24 hr period. This prevents scale and dissolved oxygen from damaging the system. Scale can also reduce efficiency. For example, a scale thickness of 1/16” will result in a 12.5% loss of efficiency.
- The hardness must be less than 200 ppm CaCO₃
- The chloride must be less than 250 ppm (should be ~100 or less)
- Total solids must be less than 2,500
- Soils, Fats, Greases, etc should be less than 10 ppm

**Flushing, Cleaning and Treating the System**

1. Thoroughly flush the system to remove as many contaminants as possible.
2. Fill the system with water, add the cleaning chemicals and circulate as per the chemical supplier instructions.
3. Drain and flush the system thoroughly until the water becomes tap water clear.
4. Add the Multi-Metal protector/scale inhibitor to the system following the chemical supplier instructions for the recommended concentration.
5. For systems requiring freeze protection, use an anti-freeze that is compatible with the existing chemicals in the system. Do not mix with other chemicals.
6. To be sure that the boiler is not air-bound, open the pressure-relief valve located at the rear of the boiler. Leave the relief valve open until a steady flow of water is observed. Close the valve and finish filling the system.
**NOTICE!** Under no circumstances should the hydronic system be flushed while the boiler is attached to the system. Debris or corrosion products may accumulate in the boiler and plug the heat exchanger. The boiler must be disconnected from the system and a bypass installed so that the chemical cleaning solution does not circulate through the boiler.

Companies that make Corrosion & Scale Inhibitor Treatment Products which are marketed as suitable For Aluminum and Multi-Metal Hydronic Systems

<table>
<thead>
<tr>
<th>Company</th>
<th>Cleaner</th>
<th>Inhibitor</th>
<th>Glycol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fernox</td>
<td>F3 Fernox</td>
<td>F1 Fernox</td>
<td>Alphi-11</td>
</tr>
<tr>
<td>Rhomar Water Mgmnt.</td>
<td>Hydro-Solve</td>
<td>Pro-Tek AL</td>
<td>RhoGard</td>
</tr>
<tr>
<td>H-O-H Chemicals Inc.</td>
<td>CL-200</td>
<td>CS-50+CS-32</td>
<td>ProKool</td>
</tr>
<tr>
<td>Sentinel/Marathon</td>
<td>X-300</td>
<td>X-100</td>
<td>X-500</td>
</tr>
</tbody>
</table>