EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING www.EquipmentAnchorage.com

PATTERSON-KELLEY CO.

DES. J. ROBERSON
JOB NO. 11-1520

SHEET

P-K COMPACT WATER HEATER (PK06DH)

 DATE
 7/7/15
 OF
 2
 SHEETS

 SLAB ON GRADE

No. 4197 EXP. 6-30-2016

FRONT ELEVATION

NOTES:

1. FORCES ARE DETERMINED PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10

STRENGTH DESIGN IS USED. (SDS = 2.20, $\Delta p = 1.0$, lp = 1.5, Rp = 2.5, $\Omega_0 = 2.5$, z/h = 0)

HORIZONTAL FORCE (Eh) = 0.99 Wp

HORIZONTAL FORCE (Emh) = 2.48 Wp (FOR CONCRETE ANCHORAGE)

VERTICAL FORCE (Ev) = 0.44 Wp

- 2. CENTER OF GRAVITY (C.G.) AND WEIGHT ARE THE GOVERNING PARAMETERS FOR DESIGN. THESE CALCULATIONS ENCOMPASS ALL WEIGHTS UP TO THE MAXIMUM WEIGHT SHOWN.
- 3. STRUCTURAL ENGINEER OF RECORD FOR THE BUILDING SHALL PROVIDE SUPPORT STRUCTURE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN IN COMBINATION WITH ALL OTHER LOADS THAT MAY BE PRESENT.

EASE

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

PATTERSON-KELLEY CO.

DES. J. ROBERSON

11-1520

2

P-K COMPACT WATER HEATER (PK06DH)

DATE 7/7/15

JOB NO.

of 2 sheets

SEISMIC ANCHORAGE

SLAB ON GRADE

LOADS: PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10.

STRENGTH DESIGN IS USED (SDS = 2.20, Δp = 1.0, |p| = 1.5, Rp = 2.5, Ω_0 = 2.5, z/h = 0)

WEIGHT = 875 LB

HORIZONTAL FORCE (Emh) = 2.48Wp = 2170 LB

VERTICAL FORCE (Ev) = 0.44Wp = 385 LB

BOLT FORCES:

BOLT SPECS: $5/8"\phi$ HILTI KB-TZ (hef = 3.125") ϕ T= 0.75ϕ Nn = 2508 LB/BOLT (TENSION) ϕ V= ϕ Vn = 4940 LB/BOLT (SHEAR)

TENSION (T)

$$T_{\text{U MAXIMUM}} = \left[\frac{2170 \# (12.5'')(3.1'')}{1 \, \text{BOLT} \, (41'')(10'')} \times (0.3) \right] + \frac{2170 \# (12.5'')(34'')}{1 \, \text{BOLT} \, (10'')(41'')} - \frac{(875 \# (0.9) - 385 \#)(3.1'')(34'')}{1 \, \text{BOLT} \, (10'')(41'')} = 2207 \, \, \text{LB/BOLT} \, \, (\text{MAX})$$

SHEAR (V)

$$V_{u \text{ MAXIMUM}} = \frac{2170 \# (34'')}{2 \text{ BOLTS } (41'')} = 900 \text{ LB/BOLT (MAX)}$$

UNITY CHECK:

$$\left(\begin{array}{c} T \ \text{U} \\ \hline \ \phi T \end{array} \right) \ + \ \left(\begin{array}{c} V \ \text{U} \\ \hline \ \phi V \end{array} \right) \ \leq \ 1.2 \qquad \left(\begin{array}{c} 2207 \\ 2508 \end{array} \right) \ + \ \left(\begin{array}{c} 900 \\ \hline 4940 \end{array} \right) \ = \ 1.06 \ \leq \ 12 \quad \text{.} \ \cdot . \quad \ \ \underline{O.K.}$$

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

PATTERSON-KELLEY CO.

P-K COMPACT WATER HEATER (PK06DH)

DES. J. ROBERSON

JOB NO. 11-1520

DATE 7/7/15

NOTES:

1. FORCES ARE DETERMINED PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10.

STRENGTH DESIGN IS USED. (SDS = 2.20, ap = 1.0, lp = 1.5, Rp = <math>2.5, z/h < 1)

HORIZONTAL FORCE (Eh) = 1.58 Wp VERTICAL FORCE (Ev) = 0.44 Wp

- 2. CENTER OF GRAVITY (C.G.) AND WEIGHT ARE THE GOVERNING PARAMETERS FOR DESIGN. THESE CALCULATIONS ENCOMPASS ALL WEIGHTS UP TO THE MAXIMUM WEIGHT SHOWN.
- 3. STRUCTURAL ENGINEER OF RECORD FOR THE BUILDING SHALL PROVIDE SUPPORT STRUCTURE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN IN COMBINATION WITH ALL OTHER LOADS THAT MAY BE PRESENT

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

PATTERSON-KELLEY CO.

DES. J. ROBERSON 11-1520

P-K COMPACT WATER HEATER (PK06DH)

7/7/15 DATE

JOB NO.

OF SHEETS

UPPER FLOOR

LOADS: PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10.

STRENGTH DESIGN IS USED (SDS = 2.20, 2p = 1.0, 1p = 1.5, 1p = 2.5, 1p z/h < 1p

WEIGHT = 875 LB

HORIZONTAL FORCE (Eh) = 1.58 Wp = 1383 LB

VERTICAL FORCE (E_V) = 0.44 W_p = 385 LB

BOLT FORCES:

BOLT SPECS: 5/8"ø (A36) THREADED ROD

φT= 10,016 LB/BOLT (TENSION)

φV= 5342 LB/BOLT (SHEAR)

TENSION (T)

$$T_{\text{U MAXIMUM}} = \left[\frac{1383\#(12.5'')(3.1'')}{1\,\text{BOLT}\,(41'')(10'')} \times (0.3) \right] + \frac{1383\#(12.5'')(34'')}{1\,\text{BOLT}\,(10'')(41'')} - \frac{(875\#(0.9) - 385\#)(3.1'')(34'')}{1\,\text{BOLT}\,(10'')(41'')} = 1369\,\text{LB/BOLT}\,(\text{MAX})$$

$$(\text{HORIZ - FRONT TO BACK}) \qquad (\text{HORIZ - SIDE TO SIDE}) \qquad (\text{WEIGHT(0.9) - 6v})$$

SHEAR (V)

$$V_{u \text{ MAXIMUM}} = \frac{1383\#(34'')}{2 \text{ BOLTS } (41'')} = 573 \text{ LB/BOLT (MAX)}$$