SEISMIC ANCHORAGE

PLAN AT BASE

FRONT ELEVATION

T = 912 LBS/BOLT
V = 212 LBS/BOLT

WEIGHT = 943 LBS
HORIZONTAL FORCE (Eh) = 0.90W = 849 LBS
VERTICAL FORCE (Ev) = 0.40W = 377 LBS

BOLT FORCES:

TENSION (T)

\[T_{\text{maximum}} = \frac{849 \times 24''}{2 \times \text{(30'') bolts)} \times 0.3 - \frac{943 \times 0.3 - 377}{4 \times \text{bolts}} = 912 \text{ LBS/BOLT (MAX)} \]

SHEAR (V)

\[V_{\text{maximum}} = \frac{849}{4 \times \text{bolts}} = 212 \text{ LBS/BOLT (MAX)} \]

NOTE:
PROVIDE FLOOR STRUCTURE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN.
(By Engineer of Record for the Building)
WEIGHT = 943 LBS
HORIZONTAL FORCE (Eh) = 144Wp = 1358 LBS
VERTICAL FORCE (Ev) = 0.40Wp = 377 LBS

BOLT FORCES:
TENSION (T)

\[
T_{\text{MAXIMUM}} = \left(\frac{1358\#(28')}{2\text{bolts}(15')} \times 0.3 \right) + \frac{1358\#(28')}{2\text{bolts}(15')} - \frac{943\#(0.9) - 377\#}{4\text{bolts}} = 1530 \text{ LBS/BOLT (MAX)}
\]

SHEAR (V)

\[
V_{\text{MAXIMUM}} = \frac{1358\#}{4\text{bolts}} = 340 \text{ LBS/BOLT (MAX)}
\]

NOTE:
PROVIDE FLOOR STRUCTURE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN.
(BY ENGINEER OF RECORD FOR THE BUILDING)