SEISMIC ANCHORAGE

WEIGHT = 1302 LBS
HORIZONTAL FORCE (E_h) = 0.90W_h = 1172 LBS
VERTICAL FORCE (E_v) = 0.40W_v = 521 LBS

BOLT FORCES:

TENSION (T)

\[
T_{\text{MAXIMUM}} = \left(\frac{1172\#(28.5^\circ)}{2\text{bolts}(19^\circ)} \times (0.3) \right) + \left(\frac{1172\#(28.5^\circ)}{2\text{bolts}(19^\circ)} \right) - \frac{1302\#(0.9) - 521\#}{4 \text{ BOLTS}} = 980 \text{ LBS/BOLT (MAX)}
\]

SHEAR (V)

\[
V_{\text{MAXIMUM}} = \frac{1172\#}{4 \text{ BOLTS}} = 293 \text{ LBS/BOLT (MAX)}
\]

NOTE:
PROVIDE FLOOR STRUCTURE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN.
(BY ENGINEER OF RECORD FOR THE BUILDING)
SEISMIC ANCHORAGE

PLAN AT BASE

USE 4- 5/8" (A36) THREADED RODS THRU FLOOR (HOLES TO BE 1/16" LARGER THAN BOLT DIAMETER MAX.)

FRONT ELEVATION

T_{max} = 1665 LBS/BOLT
V_{max} = 469 LBS/BOLT

WEIGHT = 1302 LBS
HORIZONTAL FORCE (E_h) = 144W_p = 1875 LBS
VERTICAL FORCE (E_v) = 0.40W_p = 521 LBS

BOLT FORCES:

TENSION (T)

T_{MAXIMUM} = \left[\frac{1875 \#(28.5')}{2 \text{ bolts}(19')} \times 0.3 \right] + \frac{1875 \#(28.5')}{2 \text{ bolts}(19')} - \frac{1302 \#(0.9) - 521\#}{4 \text{ bolts}} = 1665 \text{ LBS/BOLT (MAX)}

SHEAR (V)

V_{MAXIMUM} = \frac{1875\#}{4 \text{ bolts}} = 469 \text{ LBS/BOLT (MAX)}

NOTE:
PROVIDE FLOOR STRUCTURE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN.
(BY ENGINEER OF RECORD FOR THE BUILDING)